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Abstract

Symmetric indefinite matrices are an important class of matrices arising in many
applications. Some practically important computations associated with this class
of matrices are investigated in this thesis.

First our emphasis is on examining the accuracy and stability of the two
most popular methods for solving symmetric indefinite linear systems, namely
the diagonal pivoting method and Aasen’s method. Suitable pivoting strategies
are crucial to the stability of both methods. For the diagonal pivoting method,
we assess the Bunch-Kaufman and the more recent bounded Bunch-Kaufman
pivoting strategies using various stability measures. We confirm that the bounded
Bunch-Kaufman pivoting strategy achieves better accuracy for a set of examples.
However, theoretical analyses and experimental results show that the “superior”
accuracy that has been claimed is not fully justified.

For Aasen’s method, a new normwise backward stability result of Higham
is stated. We derive a growth factor bound which is attainable for matrices of
dimension 3. Direct search methods are employed to search for large growth
factors to gain insight into the behaviour of the growth factor of Aasen’s method.

Our focus is then on tackling three modified inertia problems. We propose two
alternative modified Cholesky algorithms based on the two previously mentioned
linear solvers, and compare their performance with the two existing algorithms
of Gill, Murray and Wright, and Schnabel and Eskow, both theoretically and nu-
merically. The experimental results show that all four algorithms are competitive.
Our algorithms have the advantages of ease of implementation and the existence
of a priori bounds for assessing how “good” the perturbation is.

Motivated by an application in constrained optimization, we then concentrate

on deriving structured perturbations for a block 2 x 2 matrix A, which involves
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perturbing the (1,1) block so that A has a particular inertia. We derive a per-
turbation, valid for any unitarily invariant norm, that increases the number of
nonnegative eigenvalues by a given amount. An alternative approach based on
a projection into the null space of the constraints is also considered. Theoreti-
cal tools developed include an extension of Ostrowski’s theorem on congruence
transformations and some lemmas on inertia properties of block 2 x 2 matrices.

Finally the generalized Hermitian eigenvalue problem is discussed. We clear
some confusion on the characteristics of the eigenvalues of Hermitian matrix prod-
ucts. A new concept called the inner numerical radius is introduced, using which
we derive an elegant solution to the nearness problem of finding the distance from
an indefinite matrix pair to the nearest definite pair in the 2-norm. An alterna-
tive approach for determining the inner numerical radius of a normal pair, which

exploits the characteristics of its eigenvalues, is proposed.
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Chapter 1

Introduction

1.1 Symmetric Indefinite Matrices and Numer-
ical Analysis

A matrix is symmetric indefinite if it is symmetric and has both positive and
negative eigenvalues. Symmetric indefinite matrices are an important class of
matrices arising in many applications. To name a few applications, this class of
matrices arises in Newton’s method for the unconstrained and constrained op-
timization problems [20], [31], [34], [37], [44], certain interior methods for the
general nonlinear programming problem [32], [33], penalty function methods for
nonlinear programming [43], the augmented system of general least squares prob-
lems [8], [16], [76], some interior methods for linear and quadratic programming
problem [38], [89], and in discretized incompressible Navier-Stokes equations [79].

Apart from arising intrinsically in applications, symmetric indefinite matrices
are also created from definite ones because of errors in measuring or computing
the matrix elements.

We introduce the basic terminology of floating point arithmetic in Section
1.2. In Section 1.3, the model of arithmetic on which our rounding error analy-
sis is based is defined. We also describe the computational environment for all
experiments. Then a brief introduction to IEEE standard arithmetic is given in
Section 1.4. We summarize a few classical perturbation theory results in Section
1.5. Finally an overview of this thesis is presented in Section 1.6.

We acknowledge that the material in Sections 1.2-1.5 has been adapted from

Higham [55, Chaps. 2 and 7|. Throughout this thesis, definitions and notations

12



1. Introduction

are introduced when needed.

1.2 Floating Point Arithmetic

A floating point number system F' C R is a subset of the real numbers whose

elements have the form
y=+m x g (1.1)
The system F' is characterized by four integer parameters:
e the base > 1 (sometimes called the radiz),
e the precision t, and
e the exponent range emin < € < €max.

The mantissa m is an integer satisfying 0 < m < 3! — 1. To ensure a unique
representation for each y € F it is assumed that m > 3! if y # 0, so that the
system is normalized. The range of the nonzero floating point numbers in F is
given by gemin < |y| < gemex(1 — 7).

The system F' can be extended by including subnormal numbers (also known

as denormalized numbers), which in the notation of (1.1) are the numbers
y =+m x Femint, 0<m<pt.

It is easily seen that the subnormal numbers have fewer digits of precision than
the normalized numbers.

Let G C R denote all real numbers of the form (1.1) with no restriction on
the exponent e. If z € R then fl(x) denotes an element of G nearest to z, and
the transformation z — fl(z) is called rounding. The discrepancy |z — fi(z)|

induced by this transformation is termed rounding error.

13



1. Introduction

Although we have defined fl as a mapping onto GG, we are only interested
in the cases where it produces a result in F. We say that fl(x) overflows if
fl(x)| > max{|y| : y € F} and underflows if 0 < |fl(x)| < min{|y| : 0 # y € F}.
We can show that every real number z lying in the range of F' can be approximated
by an element of F' with a relative error no larger than u = %ﬂl’t. The quantity
u is called the unit roundoff. Tt is the most useful quantity associated with F' and

is ubiquitous in the world of rounding error analysis.

1.3 Model of Arithmetic

To carry out rounding error analysis of an algorithm we first need to make some
assumptions about the accuracy of the basic arithmetic operation.
Throughout this thesis, our model of floating point arithmetic is the usual

model

fllzopy) = (xopy)(1+0), [0[<u, op=+,—x/, (1.2)

where w is the unit roundoff. We introduce the constant

nu

%:1—nu’

which carries with it the implicit assumption that nu < 1.

This model is valid for most modern computers, and, in particular, holds for
those implementing the IEEE standard arithmetic with guard digits. Cases in
which the model is not valid can be found in [55]. Some machines do not satisfy
the model because they do not use guard digits. Note that the model (1.2) ignores
the possibility of underflow and overflow.

All our algorithms and experiments were carried out in MATLAB 4.2¢ [65]

which uses IEEE standard double precision arithmetic on those machines that

14



1. Introduction

Type Size Mantissa  Exponent Unit roundoff Range
Single 32 bits 2341 bits 8 bits 27212596 x 1078 10%38
Double 64 bits 5241 bits 11 bits 279 x~ 1.11 x 10716 10308

Table 1.1: Floating point formats for single and double precision in IEEE arithmetic.

support it in hardware. All the results quoted were obtained on a Sun SPARC-
station which uses IEEE standard floating point arithmetic. Therefore the unit
roundoff v is 27°% ~ 1.1 x 107! throughout this thesis.

The cost of algorithms is measured in flops. A flop is an elementary floating
point operation: 4+, —, /, x. We normally state only the highest order terms of
flops counts. Thus, when we say that an algorithm for n X n matrices requires

n?/3 flops, we really mean n*/3 + O(n?) flops as n — oc.

1.4 ITEEE Arithmetic

IEEE standard 754, published in 1985 [62], defines a binary floating point arith-
metic system. It was developed by a working group of a subcommittee of the
IEEE Computer Society Computer Standards Committee.

The basic design principles of the standard are that it should encourage indi-
viduals to develop robust, efficient, and portable numerical programs, enable the
handling of arithmetic exceptions, and provide for the development of transcen-
dental functions and very high precision arithmetic.

The standard specifies floating point number formats, the results of the basic
floating point operations and comparisons, rounding modes, floating point excep-
tions and their handling, and conversion between different arithmetic formats.
Square root is included as a basic operation. The standard is not concerned with
exponentiation or transcendental functions such as exp and cos.

Two main floating point formats, single and double precision, are defined; see

Table 1.1. In both formats one bit is reserved as a sign bit. Since the floating

15



1. Introduction

Exception type Example Default result

Invalid operation 0/0, 0 x oo, v/—1 NaN (Not a Number)
Overflow — +oo

Divide by zero Finite nonzero/0 +oo

Underflow Subnormal numbers

Inexact Whenever fl(z opy) # x opy Correctly rounded result

Table 1.2: IEEE arithmetic exceptions and default results.

point numbers are normalized, the most significant bit is always 1 and is not
stored except for subnormal numbers. The hidden bit accounts for the +1 in
Table 1.1.

The standard specifies that all arithmetic operations are to be performed as if
they were first calculated to infinite precision and then rounded according to one
of four modes. The default rounding mode is to round to the nearest representable
number, with rounding to even (zero at the last bit of mantissa) in the case of a
tie. With this default mode, the model (1.2) is obviously satisfied. Rounding to
plus or minus infinity is also supported by the standard. The fourth supported
mode is rounding to zero (truncation, or chopping).

IEEE arithmetic is a closed system: every arithmetic operation produces a
result, whether it is mathematically expected or not, and exceptional operations
raise a signal. The default results are shown in Table 1.2. The default response
to an exception is to set a flag and continue, but it is also possible to take a trap
(pass control to a trap handler).

A NaN is a special bit pattern that cannot be generated in the course of
unexceptional operations because it has a reserved exponent field. The mantissa
is arbitrary subject to being nonzero. A NaN is generated by operations such as
0/0, 0 x oo, 0o/00, (+00) + (—oc), and v/—1.

Another feature is that the IEEE standard provides distinct representations
for 40 and —0, but comparison are defined so that +0 = —0.

The infinity symbol is represented by a zero mantissa and the same exponent

16



1. Introduction

field as a NaN; the sign bit distinguishes between +00. The infinity symbol obeys
the usual mathematical conventions regarding infinity, such as oo + o = o0,
(—1) x oo = —o0, and (finite)/oo = 0.

The standard also allows subnormal numbers to be represented, instead of
flushing them to zero as in many systems, and this feature permits gradual un-
derflow.

The floating point operation op is monotonic if fl(a op b) < fl(c op d) when-
ever a, b, ¢, and d are floating point numbers for which a op b < c op d and
neither fl(a op b) nor fl(c op d) overflows. IEEE arithmetic is monotonic, as
is any correctly rounded arithmetic. Monotonic arithmetic is important in the
bisection algorithm for finding the eigenvalues of a symmetric tridiagonal matrix

27].

1.5 Perturbation Theory

The effects of rounding errors in numerical algorithms are important and have
been much studied. The purpose of rounding error analysis is to show the exis-
tence of an a priori bound for some appropriate measure of the effects of rounding
error on an algorithm. Whether a bound exists is the most important question.
We now present some classical perturbation results for linear systems without
proof. The proofs of all the theorems can be found in Higham [55] and the
references therein. Our first result makes precise the intuitive feeling that if the
residual is small then we have a “good” approximate solution. In all these results,
AeR”™ and b € R", and F € R"" and f € R" are a matrix and vector of

nonnegative tolerances.

Theorem 1.5.1 (Rigal and Gaches) The normwise backward error

ne.g(y) = minfe: (A+ AAd)y = b+ Ab, [|AA| < €|[E]l, [|Ab] < €[l f]I}

17



1. Introduction

s given by
]|
nE:f(y) - )
IE[[ [yl + 11 £]]

where r = b — Ay. O

For the particular choice F = A and f = b, ng (y) is called the normwise
relative backward error.

The next result measures the sensitivity of the system.

Theorem 1.5.2 Let Az =b and (A+ AA)y = b+ Ab, where ||AA|| < €||E|| and
|1 A0]| < €||f], and assume that €||A7Y|||E|| < 1. Then

|z =yl € CM*WUH -
< +IATIEN )
] 1 — e[| A-H][[E]] ]
and this bound is attainable to first order in €. O

For componentwise analysis, we have the following two results. Here |A| < |B|
means |a;;| < |b;;| for all 7,7, and £/0 is interpreted as zero if £ = 0 and infinity

otherwise.

Theorem 1.5.3 (Oettli and Prager) The componentwise backward error
wpp(y) = minfe : (A+ Ad)y = b+ Ab, |AA] < B, [Ab] < ef},

s given by

where r = b — Ay. O

Here E and f are assumed to have nonnegative entries. One common choice
of tolerance is £ = |A| and f = |b|, which yields the componentwise relative
backward error.

The next result gives a forward error bound corresponding to the componen-
twise backward error. First recall that a norm || - || on C" is said to be absolute

if |||z]|| = ||=|| for all = € C™.

18



1. Introduction

Componentwise backward stability = Componentwise forward stability

wap b (7) = O(u) 28l = O(cond (A, 7)u)
v U
Normwise backward stability = Normwise forward stability
nasl®) = O(u) L5l — O (k(A)u)

Figure 1.1: Backward and forward stability.

Theorem 1.5.4 Let Az = b and (A+ AA)y = b+ Ab, where |AA| < €E and

|Ab| < ef, and assume that €|||A~|E|| < 1, where ||-|| is an absolute norm. Then
|z =y € A~ Elz| + |A7Y f]]
x| = 1T —ell|AHE] ] ’
and for the oo-norm this bound is attainable to first order in e. O

A numerical method for solving a square, nonsingular linear system Az = b is
normuwise backward stable if it produces a computed solution Z such that 14 (%)
is of order the unit roundoff. Componentwise backward stability is defined in a
similar way: we now require the componentwise backward error wa),5(Z) to be
of order wu.

If a method is normwise backward stable then, by Theorem 1.5.2, the forward
error ||z — Z||/||z]| is bounded by a multiple of x(A)u, where k(A) = [|[A~L|||| A]|.
However, a method can produce a solution whose forward error is bounded in this
way without the normwise backward error 14,(7) being of order u [55]. Hence
it is useful to define a method for which ||z — Z||/||z|| = O(k(A)u) as normwise
forward stable. By similar reasoning involving wja,5(Z), we say a method is com-
ponentwise forward stable if ||z — Z||/||x|| = O(cond(A, x)u), where the condition
number

A= A2l
cond(A, z) := Tzl

was introduced by Skeel [80]. Figure 1.1 summarizes the definitions and the

relations between them.
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1. Introduction

1.6 Overview

The rest of the thesis consists of five almost self-contained chapters. We first
examine the stability and accuracy of the two most popular methods for solving
dense symmetric indefinite linear system Az = b, A € R"*"”, namely the diagonal
pivoting method and Aasen’s method.

In Chapter 2, we describe the diagonal pivoting method in which a block
LDLT factorization

PAPT = LDLT

is computed, where P is a permutation matrix, L is unit lower triangular and
D is block diagonal with diagonal blocks of dimension 1 or 2. The choice of
permutation is crucial to its stability. Both state-of-the-art packages LAPACK
2] and LINPACK [29] employ the pivoting strategy of Bunch and Kaufman [12].
The diagonal pivoting method with the Bunch-Kaufman pivoting strategy is
normwise backward stable [58], but the factor L is unbounded in norm. Ashcraft,
Grimes and Lewis [6] comment that the solutions obtained without a bound on
|L|| can be less accurate than they should be, and propose a “bounded Bunch—
Kaufman” pivoting strategy that produces a bounded L. This new pivoting
strategy is claimed to have “superior accuracy” to the original Bunch-Kaufman
pivoting strategy. A set of test matrices for which the bounded Bunch—-Kaufman
pivoting strategy has achieved better accuracy is given in [6]. We assess these two
closely related pivoting strategies using various stability measures and examine
the significance of the Ashcraft, Grimes and Lewis examples.

In Chapter 3, we look at the stability and accuracy of Aasen’s method. Aasen’s

method with partial pivoting computes a LTL' factorization
PAPT = LTLT,
where L is unit lower triangular with first column ey, T is tridiagonal, and P is

20



1. Introduction

a permutation matrix chosen such that |[;;| < 1, and it is the only stable direct
method with a guarantee of no more than n*/2 comparisons and a bounded
factor L. Despite these advantages, Aasen’s method has received little attention
in the literature for the last decade. Neither LAPACK [2] nor LINPACK [29]
has an implementation of Aasen’s method. Since 1993, Aasen’s method has been
included in the IMSL Fortran 90 MP Library [48], [90]. The algorithm is normwise
backward stable [57] provided the tridiagonal system is solved in a numerically
stable way.

Not much is known about the behaviour of the growth factor in Aasen’s
method. We derive a growth factor bound for Aasen’s method and show that
the bound is attainable for matrix of dimension 3. Direct search methods [28],
(53], [86], [87] are employed to detect the large growth factor for Aasen’s method.
The results give useful insights into the stability of Aasen’s method.

Chapters 4-6 can be viewed as examining nearness problems associated with
symmetric indefinite matrices with their applications.

In Chapter 4, we look at the modified Cholesky factorization. Given a sym-
metric matrix A € R"*" not necessarily positive definite, a modified Cholesky
factorization combines a matrix factorization and a modification scheme to com-
pute a “not-too-large” perturbation F in some suitable norm so that P(A+ E)PT
is positive definite, where P is a permutation matrix. We explain the two existing
modified Cholesky factorizations of Gill, Murray and Wright [37] and Schnabel
and Eskow [78]. Two new algorithms, based on the LDL" factorization with
the bounded Bunch-Kaufman pivoting strategy and the LTL" factorization with
partial pivoting, are proposed. Our algorithms have the advantages of ease of
implementation and the existence of a priori bounds for assessing how “good”
the perturbation is. Our experimental results show that all four algorithms are

competitive from the linear algebra viewpoint.
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1. Introduction

In Chapter 5 we focus on deriving structured perturbations to a matrix
A € R™" with a natural block 2 x 2 structure arising in optimization prob-
lems. In constrained optimization, a “second order sufficiency” condition leads
to the problem of perturbating the (1,1) block of A so that A has a particular
inertia. We derive a perturbation, valid for any unitary invariant norm, that in-
creases the number of nonnegative eigenvalues by a given amount and show how
it can be computed efficiently given a factorization of the original matrix. We
also consider an alternative way to satisfy the optimality condition based on a
projected Hessian approach. Theoretical tools developed include an extension of
Ostrowski’s theorem on congruence transformations and some lemmas on inertia
properties of block 2 x 2 matrices.

In Chapter 6, the generalized Hermitian eigenvalue problem is discussed. That
is, Az = ABz for A, B Hermitian. For B nonsingular, it is equivalent to the
standard eigenproblem B 'Az = Az. A summary of the characteristics of the
eigenvalues of this matrix product is presented. Of particular interest is the
case where (A, B) is a definite pair. We show that the generalized Hermitian
eigenvalue problem can be reduced to a standard Hermitian eigenvalue problem
in this case, and how this approach can be efficiently implemented when A and
B are banded.

When (A, B) is not a definite pair, one relevant nearness problem is to compute
the nearest definite pair. We derive an elegant solution, in terms of what we call
the inner numerical radius, to this nearness problem in the 2-norm. We suggest an
algorithm for estimating the inner numerical radius, and hence optimal 2-norm
perturbations. When (A, B) is a normal pair, an alternative approach which

exploits the characteristics of the eigenvalues is proposed.
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Chapter 2
Accuracy and Stability of the

Diagonal Pivoting Method

2.1 Introduction

The most popular method for solving a dense symmetric indefinite linear system
Ax = b, A € R"*" is the diagonal pivoting method in which we compute a block

LDLT factorization
PAPT = LDL", (2.1)

where P is a permutation matrix, L is unit lower triangular and D is block diag-
onal with diagonal blocks of dimension 1 or 2. There are various ways to choose
the permutations. Bunch and Parlett [14] proposed a complete pivoting strategy,
which requires O(n?) comparisons. Bunch and Kaufman [12] subsequently pro-
posed a partial pivoting strategy requiring only O(n?) comparisons, and it is this
strategy that is used in LAPACK [2] and LINPACK [29].

The diagonal pivoting method with the Bunch-Kaufman pivoting strategy is
normwise backward stable, but the factor L is unbounded in norm. Ashcraft,
Grimes and Lewis [6] state that “the solutions obtained without a bound on ||L||
can be less accurate than they should be”, and they develop modifications of
the Bunch-Kaufman pivoting strategy, for both dense and sparse matrices, that
produce a bounded L. In particular, they propose a “bounded Bunch—Kaufman”
pivoting strategy that they claim has “superior accuracy” to the original Bunch—
Kaufman strategy. Both pivoting strategies passed the test certification programs

in LAPACK [6]. We shall limit our discussion to these two pivoting strategies.

23



2. Accuracy and Stability of the Diagonal Pivoting Method

The purpose of this chapter is to investigate the effect of the unbounded L in
the Bunch-Kaufman pivoting strategy, and to determine whether the bounded
Bunch-Kaufman strategy leads to more accurate computed solutions.

The rest of the chapter is organized as follows. We describe the Bunch-
Kaufman and the bounded Bunch-Kaufman pivoting strategy in Section 2.2. In
Section 2.3, a growth factor bound is derived. We present the backward stability
result of Higham [58] in Section 2.4 and use the result to assess whether the
claimed superiority of the bounded Bunch—Kaufman pivoting strategy is justified.
Section 2.5 is devoted to an investigation of the role played by the Ashcraft,

Grimes and Lewis examples [6]. Concluding remarks are given in Section 2.6

2.2 Pivoting Strategies

To define the Bunch-Kaufman (BK) and bounded Bunch-Kaufman (BBK) piv-
oting strategies we first need to explain how the block LDLT factorization is
computed. If the symmetric matrix A € R**" is nonzero, we can find a permu-

tation I/ and an integer s = 1 or 2 so that

S [E CT-‘
" [C BJ’

with F nonsingular. Having chosen such a IT we can factorize
I 0 E 0 I, E-'CT
A" =
CE~' I, ,| |0 B-CE'CT| |0 I,

This process is repeated recursively on the (n — s) x (n — s) Schur complement
S=B-CE'CT,

yielding the factorization (2.1) on completion. This factorization costs n*/3 op-
erations (the same cost as Cholesky factorization of a positive definite matrix)

plus the cost of determining the permutations I1.
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2. Accuracy and Stability of the Diagonal Pivoting Method

To describe the BK pivoting strategy it suffices to describe the pivot choice
for the first stage of the factorization. Here s denotes the size of the pivot block.
Algorithm BK (Bunch-Kaufman Pivoting Strategy) This algorithm de-
termines the pivot for the first stage of block LDLT factorization applied to a

symmetric matriz A € R"*",

a:= (1++17)/8 (= 0.64)
~v1 := maximum magnitude of any subdiagonal entry in column 1.

If 7y = 0 there is nothing to do on this stage of the factorization.

if la| > an
(1) use ayq as a 1 x 1 pivot (s =1, IT =1).
else
r = row index of first (subdiagonal) entry of maximum magnitude

in column 1.
v, := maximum magnitude of any off-diagonal entry in column r.
if Jay |y, > i
(2) use ay; as a 1 x 1 pivot (s =1, IT =1).

else if |a,.| > av,

(3) use a, as a 1 x 1 pivot (s = 1, IT swaps rows and columns
1 and r).
else
(4) use i as a 2 x 2 pivot (s = 2, IT swaps rows and
ar1 Gpr

columns 2 and 7).
end

end

The BK pivoting strategy searches at most two columns of the Schur comple-

ment at each stage, so requires only O(n?) comparisons in total. The given choice
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2. Accuracy and Stability of the Diagonal Pivoting Method

of a minimizes a bound on the element growth and is obtained by equating the
maximal element growth over two 1 x 1 pivot steps to that for one 2 x 2 pivot
step; see Section 2.3. Note that it is cases (2) and (4) of Algorithm BK in which

unbounded elements in L arise, as we now explain.

e Case (1) : ayy is a pivot, with |ay;| > ay. It follows that

1
liy = a1/, ] < —.
a

e Case (2) : ay is a pivot, with |ay;|y, > ay?. We have

1
liy = ai1/any, L] < i < I -,
jan| ~ o
where 7, /v, can be arbitrarily large.

e Case (3) : a,, is a pivot, with |a,,| > a~,. It follows that, for i # r,

1

lir = air/arra |lzr‘ < E

ainr Qr1| . .
e Case (4) : is a 2 x 2 pivot. For i # 1,r, we have

Ar1  App

Q31 Qry — Qp1 G4y

[ — [ — 110G — Qr1G41
il — 3 ir — )

anayr — a4 anay, — a4
TSI -0?) R
_ll+0) _ ilL+o)
— 21_ 2 — 21_ 2
Vi ( a?) Vi ( a?)
_n 1 _
Sy 1—a’ S l-a

Here we have the same problem as in case (2); |l;1] is not bounded.

The BBK pivoting strategy is broadly similar to the BK strategy. The idea

is to suppress case (2) and allow an iterative phase for cases (3) and (4) so that
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2. Accuracy and Stability of the Diagonal Pivoting Method

the ratio v,/ is equal to 1 [6]. One immediate consequence is that every entry
of L is bounded by max{1/(1 — a),1/a} ~ 2.78.

Algorithm BBK (Bounded Bunch—Kaufman Pivoting Strategy) This
algorithm determines the pivot for the first stage of block LDLT factorization

applied to a symmetric matric A € R™*".

a = (1+17)/8 (= 0.64)

~v1 := maximum magnitude of any subdiagonal entry in column 1.
If 4y = 0 there is nothing to do on this stage of the factorization.
if |a1| > amn

use ay as a 1 x 1 pivot (s =1, IT =1).

else
ti=Lyi=m
repeat

r:= row index of first (subdiagonal) entry of maximum magnitude.
in column 1.
v, := maximum magnitude of any off-diagonal entry in column r.
if Jay,| > 0,
use a,, as a 1 X 1 pivot (s = 1, IT swaps rows and columns
1 and 7).
else if v; = v,
use i i as a 2 x 2 pivot (s = 2, IT swaps rows and
Qri  Qpy
columns 1 and 7, and 2 and r).
else
Li=T, Y = Y
end

until a pivot is chosen.
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2. Accuracy and Stability of the Diagonal Pivoting Method

end

The repeat loop in Algorithm BBK searches for an off-diagonal element a,;
that is simultaneously the largest in magnitude in the rth and ith columns, and
it uses this element to build a 2 x 2 pivot; the search terminates prematurely if
a suitable 1 x 1 pivot is found.

It is readily verified [6] that any 2 x 2 pivot D;; satisfies

~1
@j; i 1 a 1

Qri Qo - fyr(]_ N 042) 1 «
Thus the condition number for any 2 x 2 pivot is bounded by

1
ka(Dj;) < 1 e

< 4.57. 2.2
- (22)

Since the value of v; increases strictly from one pivot step to the next, the
search in Algorithm BBK takes at most n steps. The cost of the searching is
intermediate between the cost for the Bunch—Kaufman strategy and that for the
Bunch-Parlett [14] strategy in which the whole active submatrix is searched at
each step. Matrices are known [6] for which the entire remaining submatrix must
be searched at each step, in which case the cost is the same as for the Bunch—
Parlett strategy; see Figure 2.1 for a few examples.

However, Ashcraft, Grimes and Lewis [6] found in their experiments that, on
average, less that 2.5k comparisons were required to find a pivot from a k& x k
submatrix, and they give a probabilistic analysis which shows that the expected
number of comparisons is less than ek &~ 2.718k for matrices with independently
distributed random elements. Therefore we regard the block LDLT factorization
with the BBK pivoting strategy as being of similar cost to the Cholesky factor-
ization, while recognizing that in certain rare cases the searching overhead may

increase the operation count by about 50%.
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Figure 2.1: Matrices for which the entire remaining submatrix must be searched at
each step of the BBK strategy.

2.3 The Growth Factor

The growth factor of the block LDL™ factorization is defined in the same way as

for Gaussian elimination by

max; j al; |

n — s 2.3
p maxi,j \aij\ ( )

where the a(k)

;; are the elements of the Schur complements arising in the course of

the factorization. The normwise backward stability result in next section involves
the growth factor which carries an implicit assumption that it is small. In other
words, the growth factor governs the normwise backward stability of the block
LDLT factorization with various pivoting strategies.

Explicit bounds for the growth factor with various pivoting strategies have
been derived [6], [11], [12]. In particular, for both the BK and BBK pivoting
strategies, the best available growth factor bound is

pn < (1+1/a)" '~ (2.57)"71, (2.4)
where o = (1 4+ /17)/8.

In this section, we show how the growth factor bound is derived and justify
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2. Accuracy and Stability of the Diagonal Pivoting Method

the choice of a. Recall that Algorithm BK has four pivot choices. Define ;¥ by

*h) —
Il gr;ggg\a ).

e Case (1) : a(lli) is a pivot, with \agﬁ)| > ay;. It follows that
(k) (k)

k+1 k ;170
ay = ay) — = O
ayq
so that
(k)
(k+1) la;,’]
‘ ‘ — | zg |+ 2]9) ’
|a11 ‘
and hence

1
pD <) oy < ) <1+—> :
|a11 | @

e Case (2) : ay is a pivot, with |ay; |y, > ay}. We have

a®) (k)
QD) k) G 9y
o i ®

aqq

so that

V2

e
ST e

|a(k+1 |

and hence
1
M(k+1)gu(>+&<u< ) <1+E>'

e Case (3) : a,, is a pivot, with |a,,| > a~,. It follows that, for i # r,
(k) (k)

k41 k Qjp Ay
az(j ) — az(j) _ dir (k)rj ,
Arr
so that
g )
g af?
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and hence
1
e T <1 + —) :
|arr| «@
ain Gri| . . .
e Case (4) : is a 2 x 2 pivot. We will make use of the following
Qr1 Gy

inequalities which arise from the conditions that the pivot satisfies:
k k
aPnl<ary,  ld¥] <oy, lalPa®] <oy,
k) (k 2 2 k) (k 2 2
@iy al) =71 = 7 = |afal)| > 71 (1~ a?).

rr

For i # 1,7 and j # 1,7, we have
(k) (k) (k) (k)(a(k) (1;) 1 o™ (k)) 1 a®g® 4 (k)

QB+ k) A1 Qg Ay — Q' Gy Gy ir 015 rr Gy Ay
! ! afal?) — alYal?) ’
so that
k k
A < ja®)| + P 172 + 1y + 1) + [0l |
i Qij 2(1 — 2) ;
M «Q

and hence

) <y (1 20F)N (2
1 — a? 11—«

By equating the maximal element growth of two 1 x 1 pivot steps with that

for one 2 x 2 pivot step, we obtain

(0) (%)

and o = (1 ++/17)/8 is the positive root of this quadratic equation. Hence we

obtain (2.4). Whether two 1 X 1 pivot steps can achieve the maximal element
growth is an open question.

It is easily seen that the same bounds hold for Algorithm BBK. For cases
(1) and (3) no modification is required. For case (4), we have v; = 7, and the
same bound on element growth holds. The growth factor bound (2.4) is weak
and rarely approached in general. Whether this bound is attainable remains an

open question.
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2. Accuracy and Stability of the Diagonal Pivoting Method

2.4 Error Analysis

Our model of floating point arithmetic is the usual model defined as in (1.2). The
following backward stability result, valid for any pivoting strategy, is proved by
Higham [58].

Theorem 2.4.1 (Higham) Let A € R™" be symmetric and let T be a computed
solution to the linear system Ax = b produced using the diagonal pivoting method
with any pivoting strategy. If all linear systems involving 2 X 2 pivots are solved

in a componentwise backward stable way then
(A+AA)T=b,  |AA <p(n)u(|A|+ PT|L||D||TY|P) + O(u?),  (2.5)

where p is a linear polynomial and PAPT ~ LDIT is the computed block LDL™

factorization. a

The assumption in the theorem about the 2 x 2 pivots is satisfied provided the
2 x 2 systems are solved by Gaussian elimination with partial pivoting or even
by use of the explicit inverse [58], so this assumption is satisfied in practice.

We now examine the implications of Theorem 2.4.1 for four different forms of

stability.

2.4.1 Normwise Backward Stability

To establish the normwise backward and forward stability results using Theorem
2.4.1, the remaining task is to bound the quantity |L||D|/L”| in some suitable
norm. Higham [58] shows that || |L||D||LT| ||, < 36np,|| Al for the BK pivoting

strategy, where p, is the growth factor defined as in (2.3) and

[A[|5r: = max|ai].
i
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2. Accuracy and Stability of the Diagonal Pivoting Method

By inspecting the analysis it is easily seen that the same bound with a smaller
constant term holds for the BBK pivoting strategy. Hence both pivoting strategies

are normwise backward stable, provided there is no large element growth.

Theorem 2.4.2 (Higham) Let A € R™" be symmetric and let T be a computed
solution to the linear system Ax = b produced using the diagonal pivoting method
with either the BK or the BBK pivoting strategies. If all linear systems involving

2 X 2 pivots are solved in a componentwise backward stable way then

(A+A4)F=b,  [[AA]ly < p(n)pnul| Ally + O(w?), (2.6)

AN AN A

where p is a quadratic polynomial and PAPT ~ LDL" is the computed block

LDLT factorization. 4

An immediate consequence of Theorem 2.4.2 is that in the absence of large
element growth both strategies produce a forward error bounded by a multiple
of K(A) = || Al IIA" |4, that is, both strategies produce a normwise forward

stable method.

2.4.2 Componentwise Backward Stability
For componentwise backward stability we require that
(A+ AA)T =b+ Ab, AA| < €lA|, |Ab < €|b],

where € is a small multiple of the unit roundoff.
The best a priori componentwise backward error bound obtainable from The-

orem 2.4.1 involves the quantity
¢ = min {n: P"|Z||DI|LT|P < 5|Al} . (2.7

Here, for simplicity, we use the exact factors instead of their computed counter-
parts. The bleach of correctness is harmless to the overall analysis [55, p. 177],

[58].
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2. Accuracy and Stability of the Diagonal Pivoting Method

We now show by example that the a priori componentwise backward error

quantity £ can be arbitrarily larger for the BK strategy

than for the BBK strategy,

and vice versa. In other words, neither method is better than the other from the

point of view of an a priori componentwise backward error bound.

2.4.3 BK Beats BBK

Consider
0 € 0
A=1le 0 1], e > 0.
01 1

The BK pivoting strategy computes

1 0 €
A=LDL"=| ¢ 1 e 0

el 01 1

(2.8)

The nonnegativity of the factors tells us immediately that |L||D||LT| = A = |A],

so £ = 1, that is, we have perfect componentwise backward stability.

On the other hand, the BBK strategy computes

110
PAP" = |1 0 «

0 € 0
and
1 1
PAPT =LDLT = |1 1 1
0 —e 1 €2
We have
11 0

LIDILY[ =11 2 |,

0 € 2¢
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2. Accuracy and Stability of the Diagonal Pivoting Method

so & = oo for the BBK pivoting strategy since we require 2¢2 < 0.

2.4.4 BBK Beats BK

Let
62 € €
A=1¢ 0 1/, 0<e<a.
e 1 0

The BK pivoting strategy computes

1 €2 1 et et
A=LDL" = |1 1 -1 1 0
el 01 -1 1
We have
€ € ¢
ILIDIIL"| = | e 2 1|,
e 1 2
thus & = oo.
The BBK strategy computes
01 € 1 01 1 0 €
PAP"=11 0 €| =10 1 10 1 e
€ € ¢ e € 1 —e? 1
So
0 1 €

LIID[IL"[= |1 0 €|,
€ € 36

from which we see that £ = 3 for the BBK pivoting strategy.

(2.9)

Numerical experiments with matrices (2.8), (2.9) confirm that the actual com-

ponentwise backward errors of the BK and BBK pivoting strategies can behave
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Matrix (2.8) | Matrix (2.9)
e| BK BBK | BK BBK
10071 ] 0 6e17 | le-16 6Ge-17
1072 0 le-15 | 2e-15 9e-17
1073 0 6e-15 | 9e-16 0
104 0 2e-13 | 3e-14 0
1075 | 8e-17 2e-12 | 3e-12 0
10°° 0 le-11 | 6e-12 1e-16
1077 0 6e-11 | 4e-10 0

Table 2.1: Backward error for computed solution of symmetric indefinite systems of
dimension 3.

as predicted by the bounds, that is, one componentwise backward error can be
of order u and the other very large. We solved linear systems Ax = b, where
b= A[l1¢€]T, with A defined in (2.8) and (2.9). Table 2.1 shows the componen-

twise relative backward error of the computed solution Z,

w‘A‘,‘b‘(f) = {6 : (A+AA)f: b+ Ab, ‘AA‘ < €‘A|, ‘Ab‘ < €‘b|}
Az — b;

= max

i (1Al[Z] + o))

(see [68] or [55, Thm. 7.3] for a proof of the latter equality), which would be
of order u for a componentwise backward stable method. Hence we conclude
that neither pivoting strategy is better than the other from the point of view of

componentwise backward error.

2.4.5 Normwise and Componentwise Forward Stability

Both the Bunch-Kaufman and the bounded Bunch-Kaufman pivoting strategy
have a bound for ||z —Z||/||x|| of order k(A)u. Thus both strategies are normwise

forward stable in the absence of a large growth factor. From Theorem 2.4.1 we
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have

@ — 7| < |ATY|AA]|E
= |A7Y[AAllz] + O(u?)

< |A Y p(nyu(| A + PT|L||D||LT|P)[a] + O(u?),

where 7 is replaced by z in the second equality using a standard technique from

[58]. Thus
||x||;||x||oo < p(n)u(cond(4, ) + |||A|PT|L||D||T7 | P||s) + O(u?),  (2.10)
where
ATHA
o) = LA Al
x (o)

To compare the forward error bounds for different pivoting strategies we therefore

need to look at the matrix
W = |A~YPT|L||D||L"|P, (2.11)
where we have dropped the hats. Since PAPT = LDL", we have
L=PAPTL TD !

thus
W < [ATHPT - PIAIPT|ILTY|DTY - [DI|LY|P = |ATY|A|PT|L7[DTY| DL P,
which gives

|W{|s < cond(A) cond(|D||LT]), (2.12)

where cond(A) = ||A7'|A||l. Note that if D is diagonal then [[IW], <
cond(A) cond(LT).

For the BK pivoting strategy, cond(|D||LT|) is unbounded, as is easily shown
by example. Note that |L=7||D~'||D||L| is block upper triangular with diag-
onal blocks identical to those of |D~!||D|. Thus cond(|D||L]|) is unbounded if
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cond(|D|) is unbounded. The following example is chosen so that cond(|D]), and
hence cond(|DI||L”]), is unbounded for the BK strategy but is bounded for the

BBK strategy. Let

e e 0
A= | , O<exk 1.
0 1 1
The BK strategy computes
1 e € 1 ﬁ
A=LDLT = o 1 e ¢ 1 5
ma e | L+ 12 1
Letting D; denote the diagonal block of D, we have
) 3
cond(D) = max{cond(D;)} = L—ZG — 00, as € — 0.
7 € — €

For the BBK pivoting strategy cond(|D||L”|) is bounded explicitly. Since
max; ; |l;;| < 2.79 and it is attainable only with a 2 x 2 pivot for which it causes

a subdiagonal element /;1;; to be zero, we have
LT[ < 14 (n—2)2.79 =2.790 — 457,  ||[L77|lo < (3.79)"7",  (2.13)

where the latter uses the bound in [55, Thm. 8.11, Problem 8.5].

Together with (2.2), we have
cond(|D||LT|) < cond(D)kso (LT) < 4.57 x (2.79n — 4.57)(3.79)" .

This bound is very pessimistic. Typically, for the BBK strategy, ro(LT) is of

relatively small norm.
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2.5 The Role of Ashcraft, Grimes and Lewis Ex-
ample

Ashcraft, Grimes and Lewis [6] have identified a set of matrices for which the
BBK strategy achieves better accuracy that the BK strategy. In this section, we
give some explanations for the better accuracy achieved by the BBK strategy,
and assess the importance of the examples.

We know that the accuracy of the BK algorithm goes hand in hand with ill
conditioned pivots and unbounded L. The examples of Ashcraft, Grimes and
Lewis ensure that pivots of cases (2) and (4) of the BK pivoting strategy are
chosen and that a large-normed L is formed. However the complicated require-
ments of pivot selection within the BK pivoting strategy guarantee cancellation
between the large and small elements and hence yield the normwise backward
stability result.

Experiments similar to those described in Ashcraft, Grimes and Lewis [6] were
performed. Test matrices are scaled using the scheme described in Figure 2.2 and
Table 2.2 in which large entries in L arise. Each set of parameters was given a
different random symmetric indefinite matrix A € R"*" with elements normally
distributed with mean 0 and variance 1. In total 62 test matrices were generated.
We chose = as x; = (—1)" and b := Az. Note that the computed b is not the
exact right hand side corresponding to x due to rounding error in its formation.

We measure the ratio 4 between the normwise forward errors of BK and
BBK

_ 17— 2fleepic

7 = 2flco,mBK

and compare with cond(|D||LT|)gk, the value of cond(|D||LT|) for BK. Here the

Boo

subscripts BK and BBK denote the computed quantities using the BK and BBK

strategies respectively. Our results, which show an increasing trend of (3, and
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01
02 01
0y 02 01

O2 02 02 -+ O]

09 09 O9 - 09 | O3

09 09 O9 - () 1 03

09 O9 0O9 *-- () 1 1 O3

09 O9 09 *-- (o) 1 1 1 T 03

Figure 2.2: Scaling parameter for each entry of test matrix.

initial pivot o1 09 O3 t1 to

1 x 1 pivot 10 10" 1/10 ty+1,...,2ty 1,...,6
well-conditioned 2 x 2 block 107% 1072 1072 2, +1,...,3t, 2,...,6
general 2 x 2 block 107 1072 1/10 2ty +1,...,3ty 1,...,6

Table 2.2: Parameterization of scaled test matrices.

cond(|D||L"|)gk, agree with the test results of Ashcraft, Grimes and Lewis [6];
see Figure 2.3. We note that [, = 1 for several entries, which shows that the
scaling scheme sometimes has no effect on the accuracy of the computed solution.

Recall that if L and D are nonnegative, that is, |[L| = L and |D| = D, then
W = |A7'PT|L||D||L"|P = |A7'||A], and we have a perfect stability result.
The a priori componentwise forward error bound (2.10) involves the quantity
|W ||so, which may be uninformative. The elements of the Ashcraft, Grimes and
Lewis examples vary over 18 orders of magnitude, so while ||[Wgk/||oo/||WsBK]||0o
is small (between orders 10° to 10® for these examples), we may be making large

perturbations in the small elements of |A~!||A|. Thus a componentwise measure
7 =min{n : [A[PT|L||D|IL"|P < n|A7Y| A} (2.14)

is employed. Figure 2.4 shows an increasing trend between the ratio Tspi /7K
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10°

cond(|D||LT|)pk
Figure 2.3: Comparison of relative normwise forward error on scaled N(0,1) matrices
with m = 3, n = 50.

and cond(|D||LT|)gk. Here we use the convention that 2/0 = 0 if z = 0 and
infinity otherwise. This brings us back to consider the componentwise backward
stability, where an important measure is £ defined as in (2.7). If £ is small
then 7 is more likely to be small. Figure 2.5 shows an increasing trend between
the ratio {pi/Eppk and Tk /Tepk. Thus, we can view the Ashcraft, Grimes and
Lewis examples as a special case for which large a priori componentwise backward
bounds are attained for the BK strategy but not for the BBK strategy. This is
best explained by the following example.

Let

5.6454e-19 3.0242e-07 7.5198e-07 4.7523e-07

5.4618¢-19 5.7984e-07 3.9042e 07
A= , (2.15)

9.6075e-02 3.5680e-01

1.5935e-02

which is scaled using the scheme described in Figure 2.2 with m = 2, n = 4,
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Figure 2.4: Comparison of relative componentwise

N(0,1) matrices with m = 3, n = 50.
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2. Accuracy and Stability of the Diagonal Pivoting Method

op =108, 55 = 107% and o3 = 10~!. For the BK pivoting strategy,

5.6454e-19 3.0242e-07 7.5198e-07  4.7523e-07
1.3364e-01 7.7276e-02 2.8698¢e-01

PT|L||D||LT|P =
9.6075¢-02  3.5680e-01

8.0927e-01

where the italic and underlined entries are those that have changed order com-

pared with A. Similarly, for the BBK pivoting strategy, we have

3.5668e-12 3.0242e-07 7.5198e-07 4.7523e-07

2.2508¢-12 5.7984e-07 3.9042¢-07
PT|L||D||LT|P =
9.6075¢-02  3.5680e-01

1.5935e-02

For matrix (2.15), &gk /Eppr = 3.0 X 10'® and 7pk /T = 4.0 X 10'°. Thus a
much larger componentwise backward error bound is obtained by the BK strategy.
In this case, the BBK strategy is superior to the BK strategy.

However, from the discussion in Sections 2.4.4 and 2.4.5, we know that neither
the BK strategy nor the BBK strategy is better than the other from the point of
view of componentwise backward stability in general, and a large ||[WW|| is only

a necessary condition for componentwise forward instability.

2.6 Concluding Remarks

We have investigated the accuracy and stability of the diagonal pivoting method
with two related pivoting strategies, namely the Bunch-Kaufman pivoting strat-
egy and the Bounded Bunch-Kaufman pivoting strategy. Theoretical analyses
and numerical examples demonstrate that the claim of superior accuracy of the

BBK pivoting strategy is not fully justified.
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2. Accuracy and Stability of the Diagonal Pivoting Method

For solving linear systems Az = b, the unbounded factor L arising from the
Bunch-Kaufman pivoting strategy has no effect on the backward stability or the
normwise forward stability. We have confirmed that better accuracy is achieved
by the BBK strategy when tested on the Ashcraft, Grimes and Lewis examples
[6]. The significance of these examples is not clear, however. It may be possible
that a class of numerical examples can be found where BK is more accurate than
BBK. Further work is needed to produce clear statements about the relative

accuracy of the BK and BBK strategies.
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Chapter 3
Accuracy and Stability of
Aasen’s Method

3.1 Introduction

Another important direct method for solving dense symmetric indefinite linear
systems is Aasen’s method with partial pivoting [1] which computes an LTL"

factorization of a symmetric matrix A € R**"
PAP" = LTL", (3.1)

where L is unit lower triangular with first column e; and

ar B
B ar B

572—1

ﬂnfl 7

is tridiagonal. P is a permutation matrix chosen such that |/;;| < 1.
To solve a linear system Az = b using the factorization PAPT = LTLT we

solve in turn
Lz=PTy, Ty=z2 IL'w=y, == Puw. (3.2)

The symmetric indefinite tridiagonal system T'y = z is usually solved in O(n) flops
using Gaussian elimination with partial pivoting. The disregard of symmetry at

this level has little consequence since the overall process is O(n?) flops.
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3. Accuracy and Stability of Aasen’s Method

Aasen’s method with partial pivoting is the only known stable direct method
for solving symmetric indefinite linear systems with a guarantee of no more than
n?/2 comparisons and a bounded factor L. The operation count of Aasen’s
method with partial pivoting is the same, up to the highest order terms (n?/3
flops), as that of the diagonal pivoting method with the Bunch-Kaufman pivoting
strategy, described in Chapter 2. Despite the advantages, Aasen’s method has
largely been neglected for the last decade. Neither LAPACK [2] nor LINPACK
[29] has an implementation of Aasen’s method. Since 1993, the Visual Numerics,
Inc. has included Aasen’s method in their IMSL Fortran 90 MP Library [48], [90].

In the 1970s, Barwell and George [7] compared the performance of the diagonal
pivoting method with the Bunch-Kaufman partial pivoting strategy with that of
Aasen’s method in unblocked form, on serial computers such as the IBM 360/75
and Honeywell 6050. They concluded that the difference in performance of the
algorithms, in terms of execution time, is insignificant and is compiler dependent.
A more recent LAPACK project report [3] compared unblocked and blocked ver-
sions of these two algorithms. The authors reported that Aasen’s method with
partial pivoting was faster asymptotically in the unblocked case and slower in the

blocked case. However, some limitations of the report are explained in [6]:

“Unfortunately, this report is somewhat incomplete in that no details
of the blocked algorithms were given and only factorization times
were considered. The test codes used are apparently lost. Further,

the range of machines is limited and obsolete.”

In fact the testing was only done on a Cray 2 computer with 1 processor in
which floating point arithmetic does not utilize a guard digit. It is an open
question which method is more computationally efficient in the context of parallel
computation.

To describe Aasen’s method it is convenient first to describe the Parlett and
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3. Accuracy and Stability of Aasen’s Method

Reid method; see Section 3.2. The methods are mathematically identical. Aasen’s
method is computationally more efficient because of its ingenious reordering of
the tridiagonalization calculation which allows further exploitation of symmetry
and structure. We present Aasen’s method in Section 3.3.

Often the stability of Aasen’s method is taken for granted. No backward
stability result exists in the literature. In Section 3.4, we state a backward stabil-
ity result of Higham [57] for which the tridiagonal system is solved by Gaussian
elimination with partial pivoting.

One important practical issue concerning the stability of algorithms is the
growth factor. We know very little about the behaviour of the growth factor in
Aasen’s method. Direct search methods [53] were employed to search for large
growth factors and the results are reported in Section 3.5. In Section 3.6, we

present our conclusions and identify some open problems.

3.2 The Parlett and Reid Method

We now explain how the Parlett and Reid method works. The first stage of the
algorithm can be expressed as follows. If the symmetric matrix A € R"*" is

nonzero, we can find a permutation I/ so that

1 1 n—2

1 ar By ?JT

HAHT = 1 ﬁl Q9 UT )

n—2|y v B

with 3; the largest subdiagonal element in absolute value in the first column. If

(1 = 0 then no modification is needed and we proceed to the next stage. For (3;

47



3. Accuracy and Stability of Aasen’s Method

nonzero, we can factorize

1 Qq B 0 1 0 O
ITATIT = |o 1 B 9 v — asw’ 1 w” |,
0 w I, 0 v— asw C I,

where w = y/8; and C = B — wv” — vw” + ayww”. The process is repeated

recursively on the (n — 1) x (n — 1) submatrix

S = ,
v — W C

yielding the factorization (3.1) on completion. This factorization costs 2n*/3 op-
erations (twice the cost as block LDL" factorization with the Bunch-Kaufman
pivoting strategy) plus n?/2 comparisons. Hence Parlett and Reid’s method is
uncompetitive with the block LDLT factorization with the Bunch-Kaufman piv-
oting strategy mentioned in Chapter 2. In next section, we explain how Aasen’s

method exploits symmetry and hence halves the cost of the factorization.

3.3 Aasen’s Method

For convenience, we assume, without loss of generality, that no interchanges are
needed, which amounts to redefining A := PAP” in (3.1). To derive Aasen’s
method, assume that the first 2 — 1 columns of 7" and the first ¢ columns of L are
known. We show how to compute the ith column of 7" and the (i + 1)st column

of L. A key role is played by the matrix

H=TL", (3.3)
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3. Accuracy and Stability of Aasen’s Method

which is easily seen to be upper Hessenberg matrix. Equating the sth column in

(3.3) we obtain

hy; lix arly + Bilio

hai Lio Bilin + aslip + Balis
hiq, lii—1 Bi—alii—o + ci_1li i1 + Bizy

hi | = T 1 = Bi—ilii—1 + o . (3.4)
Pisa, 0 Bi

0 0 0

0 0 0

We use an underline to denote an unknown quantity to be determined.
The first i — 1 equations in (3.4) are used to compute hy, ..., hj—1;. The next
two equations contain two unknowns each so cannot yet be used. The (i,7) and

(i + 1,4) elements of the equation A = LH give

1—1

a;; = Z lijhj; + hg, (3.5)
j=1

Qit14 = Z liv1,jhji + hita, (3.6)
j=1

which we solve for h;; and h;y1,. Now we can return to the last two nontrivial

equations of (3.4) to obtain «; and ;. Finally, the ith column of the equation
A = LH yields

i+1

Ak = Z lkjhji; k=1 + 2:n,
j=1

which yields the elements below the diagonal in the (i + 1)st column of L:

lk,i+1 = h
i+1,

1 i
(aki — Z lkjhji); k=1 + 2:n. (37)
j=1
The factorization has thereby been advanced by one step.
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3. Accuracy and Stability of Aasen’s Method

Clearly, equations (3.2), (3.4)-(3.6) are all O(n?) flops processes. To derive the
leading order of the operation cost, we need only to consider the most expensive
loop (3.7). For each I ;41, it costs 27 + 1 flops. Hence the (i + 1)st column costs

(n —1—2)(2i 4+ 1) flops in total. In completion of L we need

[\

n—

N

n—
n3

(n—z’—2)(2i+1):2. (ni —i*) + O(n?) = ; + O(n?) flops.

1 =1

[

3.4 Numerical Stability

Our model of floating point arithmetic is the usual model (1.2). The following

backward stability result is proved by Higham [57].

Theorem 3.4.1 (Higham) Let A € R"" be symmetric and let T be a computed
solution to the linear system Ax = b produced by Aasen’s method with partial

pivoting. Then
(A+AA)F=b,  |AA] < Yauis PTITIITIET|P + Y2040 PTIT| T M| T | Z7| P,

where T ~ MU and PAPT ~ LTLT are the computed factorizations produced
by LU factorization with partial pivoting and LTLT factorization with partial

pivoting respectively. Moreover
124] < (0 = 1*Yi5ns5l| Tl O

Theorem 3.4.1 shows that Aasen’s method is a backward stable method for

solving Az = b provided that the growth factor

pn(A) = maxi [ti;| (3.8)

max;,; |ai;|
is not too large. Here, we are making the reasonable assumption that max; ; |t;;| ~

max; ; |1;;] [55, p.177].
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3. Accuracy and Stability of Aasen’s Method

3.5 The Growth Factor

In this section, we bound the growth factor for Aasen’s method with partial
pivoting and investigate whether the bound is attainable using a combination of
direct search methods described in [28], [53], [86], [87].

First we bound the growth factor. Using the fact that the multipliers in
Aasen’s method with partial pivoting are bounded by 1, it is straightforward to

show that if max; ; |a;;| = 1 then T has a bound illustrated for n = 5 by

7| < 2 4 8

8 16 32
32 64
Hence
pn(A)§4n72

1 -1 1 1 1 -1 10 0
A=1-1 1 1]=1]0 1 1 1 2 1 —1| =LTL". (3.9)
1 1 1 0 —1 1 2 4 1

For n > 4, we were unable to construct such an example. It is an open question
whether this upper bound is attainable.

One useful approach to investigate the numerical instability of an algorithm
is to rephrase the question as an optimization problem and apply a direct search
method.

In our case, the growth factor is expressed as a function f : R* — R. To
obtain an optimization problem we let 2 = vec(A) € R +7/2 where vec(A)

comprises the columns of the upper triangular part of A strung out into one long
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3. Accuracy and Stability of Aasen’s Method

vector, and we define f(z) = p,(A) where p,(A) is defined in (3.8). Then we
wish to determine

= n(A). 3.10
x| fle)= | max  en(4) (3.10)

Direct search methods are usually based on heuristics that do not involve as-
sumptions about the function f. Only function values are used and no derivative
estimate of f is required. The main disadvantages are that the convergence is at
best linear and the nature of the point at which the methods terminate is not
known since derivatives are not calculated [53]. Nevertheless it provides a conve-
nient starting point in tackling the problem when limited information is known
about f.

We have used three direct search methods implemented in the MATLAB Test
Matrix Toolbox [54]. They are the alternating directions method (adsmax.m)
(53], the multidirectional search method (mdsmax.m) of Dennis and Torczon [86],
[87], and the Nelder-Mead simplex method (nmsmax.m) [28].

For our optimization problem (3.10) with n = 3, starting naively with initial
matrix A = I and default tolerance 103, mdsmax.m needed only 8 iterations and

139 function evaluations to converge. It gave p,(A) = 3.9944, where

—0.6370 —0.0835 —0.0835
A= 1-0.0835 1.0000 —0.9972
—0.0835 —0.9972 1.0000

is a different form of matrix than our example (3.9).

In our remaining experiments, we started the search with a random vector
with default tolerance which is set to 1073 for all three routines. When one of
them converged, we restarted the search using a different method until all three
of them converged to the given tolerance. Then the search was restarted with a

smaller tolerance. The tolerance was reduced gradually to 1075,
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3. Accuracy and Stability of Aasen’s Method

For n = 4 and 5, the largest growth factors found so far are 7.99 and 14.61
respectively, compared with the bounds of 16 and 64. It is an open question to
determine a sharp bound for the growth factor. However, unsuccessful optimiza-
tions can also provide useful information. As Miller and Spooner explain [66,

p. 370],

“Failure of the maximizer to find large values of w (say) can be inter-
preted as providing evidence for stability equivalent to a large amount

of practical experience with low-order matrices.”

3.6 Concluding Remarks

Aasen’s method is the only stable direct method with O(n?/2) comparisons and a
bounded factor L, for solving symmetric indefinite linear system Ax = b. The di-
agonal pivoting method with the Bunch-Kaufman pivoting strategy and Aasen’s
method are competitive in terms of speed for dense matrices. It is not clear which
method is more efficient for sparse matrices and on parallel architectures. More
testing on a wider range of machines is desirable.

An open problem is to construct matrices for which the growth factor bound
is attained for n > 4, or to derive a sharper growth factor bound for Aasen’s

method.
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Chapter 4
Modified Cholesky Algorithms

4.1 Introduction

A standard method for solving unconstrained optimization problems is Newton’s
method. Given a twice continuously differentiable function F(z) : R* — R, let
first and second derivatives of F'(x) be known at the iterate z(¥). A local quadratic
model of F(x) can be obtained using the first three terms of Taylor’s series at
%) that is,

F(a®™ +p) = F® 4 gWTp + %pTG(’“’p,

where F*®) = F(z), gk) = (aF)x::C(k) = VF|,_,m is the gradient of F at z(¥),

oz

Gk = (aai) _ is the Hessian matrix and p is the search direction. The
z;0z; ) x=x(*)
minimum of the quadratic model is attained when ¢®7p+1p" G®p is minimized.

For a stationary point, we have V(g 7p + %pTG(k)p) = 0, which gives
GWp = —g®). (4.1)

The search direction p satisfying (4.1) is called the Newton direction and the
minimization algorithm that takes a unit step in this direction at each stage is
Newton’s method. In practice, a line search is incorporated, that is, z* ) =
) + o p is used instead, where ay, is chosen so that F(z®) 4+ o4p) is minimized.

If G®) is positive definite, a descent direction p is guaranteed since ¢¥)7Tp =
—g®T(GIN=1g*k) < 0. In practice, we want g¥)7p < —§, for some positive
constant ¢, so that F' can be “sufficiently reduced” for small enough «y, which
is essential to achieve convergence [36]. In any case, if p satisfies some modified

version of (4.1), we called the algorithm a modified Newton method.
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4. Modified Cholesky Algorithms

Given an indefinite Hessian matrix, one popular approach is to compute a
“nearby” positive definite matrix to the original indefinite one. A natural ap-
proach is to combine a matrix factorization like the Cholesky (LDLT) factor-
ization with a modification scheme. This widely used technique is the so-called
modified Cholesky factorization [37], [78]. In this chapter, we describe the two ex-
isting modified Cholesky factorizations and propose two alternative modification
schemes.

Given a symmetric matrix and not necessarily positive definite matrix A,
a modified Cholesky algorithm produces a symmetric perturbation E such that
A+ F is positive definite, along with a Cholesky (or LDL™) factorization of A+E.

The objectives of a modified Cholesky algorithm can be stated as follows [78].
O1. If A is “sufficiently positive definite” then E should be zero.
O2. If A is indefinite, ||E|| should not be much larger than
min { ||AA| : A+ AA is positive definite },
for some appropriate norm.
03. The matrix A + E should be reasonably well conditioned.

O4. The cost of the algorithm should be the same as the cost of standard

Cholesky factorization to highest order terms.

Two existing modified Cholesky algorithms are one of Gill, Murray and Wright
(the GMW algorithm) [37, Section 4.4.2.2], which is a refinement of an earlier
algorithm of Gill and Murray [36], and an algorithm of Schnabel and Eskow (the
SE algorithm) [78].

We explain the GMW and SE algorithms in Sections 4.2 and 4.3 respectively.
The GMW and SE algorithms both increase the diagonal entries as necessary in

order to ensure that negative pivots are avoided. Hence both algorithms produce
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4. Modified Cholesky Algorithms

Cholesky factors of P(A + E)P with a diagonal E, where P is a permutation
matrix.

In Section 4.4, we show that the “optimal” perturbation in objective (O2) is,
in general, full for the Frobenius norm and can be taken to be diagonal for the
2-norm (but is generally not unique). There seems to be no particular advantage
to making a diagonal perturbation to A. We propose an alternative modified
Cholesky algorithm based on the block LDLT factorization with the bounded
Bunch-Kaufman (BBK) pivoting strategy described in Chapter 2. Our algorithm
perturbs the whole matrix, in general. However, it is suitable even for sparse
matrices since our proposed modification scheme keeps the sparsity of the factors
L and D.

In outline, our approach is to compute a block LDL™ factorization
PAPT = LDLT, (4.2)

where P is a permutation matrix, L is unit lower triangular and D is block

diagonal with diagonal blocks of dimension 1 or 2, and to provide the factorization
P(A+E)PT =L(D+ F)L",

where F'is chosen so that D + F (and hence also A + E) is positive definite.

This approach is not new; it was suggested by Moré and Sorensen [67] for
use with the block LDLT factorization computed with the Bunch-Kaufman [12]
and Bunch—Parlett [14] pivoting strategies. However, for neither of these pivoting
strategies are all the conditions (O1)—(04) satisfied, as is recognized in [67]. The
Bunch-Parlett pivoting strategy requires O(n?) comparisons for an n x n matrix,
so condition (O4) does not hold. For the Bunch-Kaufman strategy, which requires
only O(n?) comparisons, it is difficult to satisfy conditions (O1)-(03), as we
explain in Section 4.4.

There are two reasons why our algorithm might be preferred to those of Gill,

Murray and Wright, and of Schnabel and Eskow. The first is a pragmatic one: we
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can make use of any available implementation of the form (4.2), needing to add
just a small amount of post-processing code to form the modified factorization.
In particular, we can use the efficient implementations for both dense and sparse
matrices written by Ashcraft, Grimes and Lewis [6], which make extensive use of
level 2 and 3 BLAS for efficiency on high-performance machines. In contrast, in
coding the GMW and SE algorithms one must either begin from scratch or make
non-trivial changes to an existing Cholesky factorization code.

The second attraction of our approach is that we have a priori bounds that
explain the extent to which conditions (O1)-(03) are satisfied—essentially, if L
is well conditioned then an excellent modified factorization is guaranteed. For
the GMW and SE algorithms it is difficult to describe under what circumstances
the algorithms can be guaranteed to perform well.

Note that the analysis in Section 4.4 works for all congruence transformations.
In Section 4.5 we describe a modified Aasen algorithm based on Aasen’s method.
Numerical results are presented in Section 4.7. We give conclusions and directions

for future work in Section 4.8.

4.2 The Gill, Murray and Wright Algorithm

In this section, we summarize the algorithm of Gill, Murray and Wright (the
GMW algorithm) [37], which is designed to satisfy the four objectives stated
in Section 4.1. The GWM algorithm is based on the LDLT factorization (or
the Cholesky factorization) and modifies only diagonal elements, that is, given

A € R™™, we compute

PAPT + E=LDL", (4.3)
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where P is a permutation matrix, L is unit lower triangular, D= diag(c?i) and

E = diag(e;). Here d; is chosen so that
- (i) ~1/2
d; > max{|d""|,d} and lijd; "™ <&, (4.4)

for some suitable positive constants ¢ and &, where d® is the “natural” pivot at

the ith stage of the factorization. The choice of & and d will be discussed later.
For any symmetric matrix A € R, let A*®) ¢ R?-k+1D)x(n—k+1) denote the

Schur complement remaining at the kth stage of the factorization, for £ = 1:n

(A = A). We can find a permutation IT so that

AW T = : (4.5)

with d*®) the maximum diagonal element in magnitude. Having chosen such a IT

we can factorize

o] f@ o ] g
HAROT 4 B, = [;C(k) In_kJ {0 A<k+1>J [0 Zk : (4.6)

where A*+D) = Bk) _ d%c(’“)c(k)T. Here dj, = d®) + ¢, is chosen to satisfy (4.4)

k

and

er, at the (1,1) entry,
E, =

0, otherwise.

Thus we have, on squaring the second inequality in (4.4),

~ (k) ])2
di > max{|d®|, 6}, 0< HCJHOO < & (4.7)
k

In order to minimize d; and hence e;, we have

~ B)][2
d;, = max {|d(k)|, d, H gQHOO} .
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Hence

~ 2
|@k=|dk—d(k)§max{d |, 0, ||C£|| }+|d(k)|

™13
&

IN

+2[d®)] + 6, (4.8)

This process is repeated recursively on the Schur complement A**1 yielding the
factorization (4.3) on completion.
Gill and Murray [36] derive an upper bound for ||E(£)]||2, depending on &,

using the following lemma.

Lemma 4.2.1 (Gill and Murray) Let A € R"”" and & be defined as in (4.4).
Let A% denote the Schur complement at the kth stage of the GMW algorithm.
We have

o) | <a+ (k=1 oI <B4+ k- 1E, i# ), (4.9)
where a = max; |a;| and § = max;; |a;;|.

Proof: The proof is by induction. For k = 1, (4.9) is trivially true since
AN = A. Assume (4.9) is true for K = m. For k = m + 1, using the second

inequality in (4.7), we have

ai V< ]+ 1dy ()] < a4+ mé,

al" < B 4 (d e ™M) < B+ me?,

as required. 0O

Using Lemma 4.2.1 and (4.8), it is easily shown that
B 2 2
Bl =max|e] < (g + (0 =1E) +2(a+(-1D€) +5 (410)

It remains to describe the choice of & and §. For &£, note that the bound of
|E(€)]|2 is a convex function of & and is minimized when & = 3/v/n? — 1 [36].
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In addition, a lower bound for £ is required so that objective (O1) is satisfied,
that is, [|[E(§)||2 = 0 when A is sufficiently positive definite. When no modifica-
tion is added, the GMW algorithm is just the standard LDLT factorization with

complete pivoting and a;; = Z;Zl I7,d; with d; > 0. This implies

0< lfjdj <a; < ml?x apr = O
If o < &%, (4.4) guarantees no modification is made. So the final choice of £ is
£ = max{a, 8/vVn2 — 1,u},

where u is the unit roundoff and is introduced to allow for the case when A = 0.
No detail of how ¢ is chosen is given in [37]. The default value of § in Margaret
Wright’s MATLAB code for the GMW algorithm is § = 2u max{«a + 3, 1}.
At each stage, ||c®)||, is computed to determine the amount of perturbation,
hence the extra cost induced is n?/2 to the highest order. The cost of the pivoting

is also n?/2 to the highest order. Thus objective (O4) is trivially satisfied.

4.3 The Schnabel and Eskow Algorithm

The algorithm of Schnabel and Eskow (the SE algorithm) is broadly similar to
the GMW algorithm. The SE algorithm also carries out the LDL™ factorization
using the Gershgorin circle theorem to determine the size of the perturbation
and the choice of pivot, and has a two-phase strategy. Given A € R"*", the SE

algorithm computes
PAPT + E=LDILT,
where P is a permutation matrix, L is unit lower triangular, D= diag(c?i) and
E = diag(e;).
The two-phase strategy is used to avoid perturbing sufficiently positive-definite

matrices. In the first phase, the LDLT factorization with complete pivoting (that

60



4. Modified Cholesky Algorithms

is, pivoting along the diagonal) is used. We switch to the second phase of the
algorithm if the minimum diagonal element in the Schur complement is smaller

than 0, where 6 = a7 and 7 = u'/3

is recommended in [78].
No modification is made in the first phase and the element growth is bounded

using the following lemma (cf. Schnabel and Eskow [78, Thm. 5.2.1]).

Lemma 4.3.1 Let A € R"™" and let § be a positive constant. Let the first phase
of the SE algorithm be completed at the end of the (k — 1)st stage and switch to
the second phase at the kth stage. Let A®) ¢ Rn—k+)x(n=k+1) denote the Schur

complement. If ming<i<, agf) > 0, then
d <o, JaPl<av -5 i#j (4.11)

where a = max; |a;| and § = max;; |a;;|.

Proof: At the end of the (k — 1)st stage, we have

—— [k; "Z:W :[L o |[o o) fzr mr]
vk | C B | M L] [0 a®] [0 L]

which gives
B=MDM" + A®),

This implies, for i = k:n,
k—1
a > bzz = Zmida +a£lk) > 6,
7j=1

thus az(-f) < «a and Zf;ll mg;d; < a — 0. Moreover, using the Cauchy-Schwartz

inequality, we have
k—1
1l < [biy| + ‘ > mirdymy;
r=1

k—1 1 1
< ol + (S mid ) (om2dy)?
r=1

§6+a_6a
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which completes the proof. 0O

If the first phase runs to completion, then the SE algorithm performs an LDL™
factorization with complete pivoting. The SE algorithm switches to the second
phase at the kth stage if ming <<, a (k ) < 6.

Once the algorithm switches to the second phase, the Gershgorin circle theo-

rem is used to determine the amount of perturbation and the choice of pivot.

Theorem 4.3.2 (Gershgorin Circle Theorem) Let A € C"*". Then each
eigenvalue \; of A lies in one of the disks in the complex plane
Gi:{)\i:|)\i—aii|§Zazj|}, i=1mn.
J#1
Proof: See [81]. O
For a real symmetric matrix, Theorem 4.3.2 says that all the eigenvalues lie

in a union of real intervals {G; U---UG,}, where

G = [gz agz-l— [ Z |az]‘ Qi + Z |az]|] (4-12)

iZ£] 2]

Let A®) ¢ Rr—k+1)x(n=k+1) denote the Schur complement of the kth stage
of the factorization and have the Gershgorin intervals GZ(-k), i = k:n, defined as
n (4.12). Schnabel and Eskow [78] determine their choice of perturbation so
that the Gershgorin intervals contract at each step of the factorization, that is,
G(/’ngl C G , i = k + 1:n. The following lemma is a modified version of [78,

Lem. 5.1.1] in which we have introduced a positive tolerance 0. Recall that if

then A+ = k) d%c(’“)c(’“)T where dj, = d®) + ¢, is chosen to satisfy (4.13) in

k

the following lemma.
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Lemma 4.3.3 Let A®) ¢ RO—k+Dx(n=k+1) pane the Gershgorin intervals Gl(k),
i = k:n, defined as in (4.12). Let d*) denote the pivot at the kth stage, defined

as in (4.5), and let e}, denote the perturbation added to d®. If

-~

dy = d®) + e > max{d(k), ||C(k)||1, 5}, (4-13)

where dy, is defined as in (4.6), then GEHI) C ng), fori=k+ 1:mn.

Proof: The choice of perturbation (4.13) ensures that dy, > 0. When dj, > 0,
we have for i = k + 1:n,

o = g oD 3 a0 [ = 3 o]
j=k

j=k+1 =
i#j i#]

k+1) (k+1
= (ay ™ - Zz+mu+§jlu—|+m
j=k+1
i#j
o _a? oy tmax{e®ll, 0} = 6]
dk dk
4]
:(y—mwﬂk m’b >0, (4.14)
dy,

if dp > max{d®_ ||c®];,s}.

Similarly, we have for i = k + 1:n,

0y 2
éﬁn_¢@§<_1+mMﬂk N0} |2N#”<&
dk dk

Thus G (k+1) C G O

An immediate consequence is as follows.

Corollary 4.3.4 Let )\I(f) and %), denote the minimum and mazimum etgen-

in

values of A®). Then for k <i<mn,
max{ A% |, NO. [} < a® 4 (n — k)B® 45,
where o) = max; |az('f)|) B®) = max;; |az(';'€)|- O
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The final choice of Jl is
Ei\i = maX{d(Z) +e_1, ||C(Z)||17 6}a (415)

which means that, at any stage, the perturbation e; is as large as the perturbation
on the previous stages. That is, e, > e; for k > j. The reason is that the choice
(4.15) does not change the value of || E||5 and results in a larger d; if (4.15) is used
rather than (4.13), which in turn will yield a smaller perturbation d, "¢ ¢@7 . Ag
Schnabel and Eskow [78] explain, “this reasoning does not imply that the final
value of || E|| will be smaller using (4.15). .., but it makes this seem likely, and in
practice the modification appears to be helpful in some cases and virtually never
harmful.”

Note that the proof of Lemma 4.3.3 is independent of the choice of pivot. For

the pivoting strategy at the kth stage, the SE algorithm chooses the row for which
(k)

the lower Gershgorin bound gi(f) is the largest. If max; g;~’ > 0, then e; = 0 and
the Gershgorin intervals will contract.

This pivoting strategy is impractical because it assumes all the Gershgorin
bounds for the remaining rows are known and it costs O(n®) operations overall.
Instead, the SE algorithm approximates the lower bound of Gershgorin intervals

using (4.14)

o o (1 Iy
d

The extra cost of the modification is 5n?/2 flops. Note that the estimate may

be rather different from the exact bounds. However, the estimate is used only to

determine the choice of pivot. Schnabel and Eskow [78] have shown by experiment

that it does not significantly affect the performance of the SE algorithm.

At the final stage of the second phase, when only a 2 x 2 submatrix A"~
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remains, we choose

~

€n1 = ldp_1 —

) AB=1) _ \(n=1)
= max {en_g, —Aﬁﬁfm” + max { T( — ),6}

4=

1—7

min

_ A=) A=)
Smax{en_g,)\(" 1)|_|_7—(‘ 1|+ min 1) e
-7

where Al and Afﬁi;” denote the maximum and minimum eigenvalues of A=)
respectively.
Suppose the SE algorithm switches to the second phase at the kth stage.

Using Lemma 4.3.1 and Corollary 4.3.4, we have

1Bl < 72 [a® + (n—F)® + 6] + 6
< 1t:[a+(n—ﬁ)(ﬁ+a—6)} + 1376
< 2 T n(a + B)) + ——s, (4.16)

—1-7 1—171

which is a smaller bound than that of the Gill, Murray and Wright algorithm

defined as in (4.10) by a factor n.

4.4 The New Modified Cholesky Algorithm

We begin by defining the distance from a symmetric matrix A € R"*" to the

symmetric matrices with minimum eigenvalue \,;, at least d, where § > 0:
p(A,0) = min {||AA| : Amin(A + AA) > 6} (4.17)

The distance in the 2- and Frobenius norms, and perturbations that achieve them

are easily evaluated (see Halmos [47], Higham [51, Thms. 2.1, 3.1]).
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Theorem 4.4.1 Let the symmetric matriz A € R™*™ have the spectral decompo-

sition A = QAQ" (Q orthogonal, A = diag()\;)). Then, for the Frobenius norm,

1/2
pr(A,0) = (Z(é - )\1)2)

i<

and there is a unique optimal perturbation in (4.17), given by
AA = Qdiag(n)QT, T; = (418)

For the 2-norm,

pa(A,6) = max( 0,0 — Amin(A) ),

and an optimal perturbation is AA = puy(A,)I. The Frobenius norm perturbation

(4.18) is also optimal in the 2-norm.

Proof: Let A+ AA = X be symmetric positive definite with A, (X) > 4,
and Y = QT XQ. It is easily shown that ; > 6. Then

1A = XI5 = (14 = YI%

= nyy + Z()\z — i)

i2j i
> Z()‘z — i) > Z()\z —4)%,
A <0 A <O

This lower bound is attained, uniquely, for the matrix Y = diag(d;), where

)\ia )‘z 2 6a
0, A <o

d; =

The representation of AA follows, since AA =X — A.
For the 2-norm perturbation, we make use of an inequality from [41, Col. 8.1.3].
We have
0 = Amin(A + AA4) < Apin(4) + Amax (AA4),
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where A, AA are symmetric. The equality is achieved when A\, (AA) = § —
Amin(A), hence the result.
By taking the 2-norm of the perturbation, it is trivial to show that the optimal
Frobenius norm perturbation is also an optimal 2-norm perturbation. O
Our modified Cholesky algorithm has a parameter § > 0 and it attempts to
produce the perturbation (4.18).
Algorithm MC (Modified Cholesky Factorization) Given a symmetric ma-
trivr A € R™"™ and a parameter § > 0 this algorithm computes a permutation
matriz P, a unit lower triangular matriz L, and a block diagonal matriz D with

diagonal blocks of dimension 1 or 2, such that
P(A+E)P" = LDL"

and A + E is symmetric positive definite (or symmetric positive semidefinite if

d = 0). The algorithm attempts to ensure that if Ayin < 6 then Apin(A+ E) = 9.

1. Compute the symmetric indefinite factorization PAPT = LDL” using the
BBK pivoting strategy (Algorithm BBK).

2. Let D= D+ AE, where AD is the minimum Frobenius norm perturbation
that achieves Amm(D+AD) > 6 (thus AD = diag(AD;;), where ADj; is the

minimum Frobenius norm perturbation that achieves )\min(ﬁii—l—Aﬁii) > 0).

To what extent does Algorithm MC achieve the objectives (O1)-(04) listed
in Section 4.17 Objective (O4) is clearly satisfied, provided that the pivoting
strategy does not require a large amount of searching, since the cost of step 2 is
negligible. For objectives (O1)-(03) to be satisfied we need the eigenvalues of
A to be reasonably well approximated by those of D. For the Bunch-Kaufman
pivoting strategy the elements of L are unbounded and the eigenvalues of D can

differ greatly from those of A (subject to A and D have the same inertia), as is
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AMA)  ANDggk) A(Dgk)
—6.1e—=01 —1.0e+00 —1.0e—05
1.0e—10 1.0e—10 1.0e—05
1.6e+00 1.0e+00 1.0e+00

Table 4.1: The eigenvalues of matrix (4.19) and the block diagonal matrix D when the
BBK and BK pivoting strategies are used.

easily shown by example. Let

0 ¢ O
A=1le 0 1], (4.19)
01 1

where ¢ = 1075, Table 4.1 displays the eigenvalues of A and of the block diago-
nal D computed using the LDL" factorization with the BK and BBK strategies
(denoted by Dgk and Dgpi respectively). The eigenvalues of Dgy differ as much
as an order of 5 from those of A. This is the essential reason why the Bunch—
Kaufman pivoting strategy is unsuitable for use in a modified Cholesky algorithm.

To investigate objectives (O1)—(03) we will make use of a theorem of Os-
trowski [60, p. 224], [69]. Here the eigenvalues of a symmetric n X n matrix are

ordered such that A\ < --- <\,

Theorem 4.4.2 (Ostrowski) Let M € R"™™" be symmetric and S € R"*" non-

singular. Then for each k, k = 1:n,
M (SMST) = 0\ (M)
where A\ (SST) < 0, < M\, (SST). O

Note that the Sylvester law of inertia [41, Thm. 8.1.12] is a corollary of Ostrowski’s

theorem.
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Assuming first Apnin(A) > 0, and applying the theorem with M = D and
S = L, we obtain
)\min(A) S )\maX(LLT))\min(Zj)-

Now FE will be zero if Ayin(D) > 6, which is certainly true if
Amin(A) > 6 Amax(LLT). (4.20)

Next we assume that A\yin(A) is negative and apply Theorem 4.4.1 and The-

orem 4.4.2 to obtain

)\min(A)

D) =6 — Amin(D) < § — 222
Amas(AD) = 5 = dnia(D) < 6 = 37

(4.21)
Using Theorem 4.4.2 again, with (4.21), yields
||E||2 - )\maX(E) = )\maX(LELT)
S )‘maX(LLT))‘max(ﬁ)

< Amax(LLT) <5 - %) : (4.22)

where Amin(A) < 0. A final invocation of Theorem 4.4.2 gives
Amin(A + E) > Amin(LLT) Amin (D + AD) > Apin (LLT)6.
and

A+ Ells = Amax(A + E) = Amax(L(D + AD)LT)
< Amax(LLT ) Amax(D + AD)
= Amax(LLT) max{8, Amax(D)}

Amax(4)
< T e
< Amax(LL") max {6, i }

Hence

ko(A+ E) < /-CQ(LLT)maX{l, AI:‘“(*L(;))&} (4.23)
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We can now assess how well objectives (O1)—(03) are satisfied. To satisfied
objective (O1) we would like E to be zero when An;, > 6, and to satisfy (O2)
we would like ||F]|2 to be not much larger than 6 — A, when A is not positive
definite. The sufficient condition (4.20) for E to be zero and inequality (4.22)
show that these conditions do hold modulo factors Amax.min(LLT). Inequality
(4.23) bounds k(A + E) with the expected reciprocal dependence on §, again
with terms Amaxmin(LLT). The conclusion is that Algorithm MC is guaranteed
to perform well if Apin(LLT) and M.y (LLT) are not too far from 1.

Note that, since L is unit lower triangular, e] (LL")e; = 1, which implies that
Amin(LLT) < 1 and Apa(LL") > 1. For the BBK pivoting strategy we have

max;,; ‘lz]| S 2781, SO

1 < Amax(LL") < trace(LL") = ||L||} < n+ in(n —1)2.7812 < 4n? — 3n.
(4.24)

Furthermore,
1< Ain(LLT)™H < (ELT) 7o < LT < (3.781)*7, (4.25)

using a bound from [55, Thm. 8.13 and Problem 8.5]. These upper bounds are
approximately attainable, but in practice are rarely approached. In particular,
the upper bound of (4.25) can be approached only in the unlikely event that most
of the subdiagonal elements of L are negative and of near maximal magnitude.
Note that each 2 x 2 pivot causes a subdiagonal element /;,; ; to be zero and so
further reduces the likelihood of |[L™'||; being large.

The modified Cholesky algorithm in this section and the corresponding anal-
ysis are not tied exclusively to the BBK pivoting strategy. We could use instead
the “fast Bunch—Parlett” pivoting strategy from [6], which appears to be more
efficient than the BBK pivoting strategy when both are implemented in block
form [6].
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4.5 The Modified Aasen Algorithm

In this section, we assess the feasibility of using LTLT factorization with partial
pivoting for computing a modified factorization. Our modified Aasen algorithm
has a parameter 6 > 0 and it attempts to produce the perturbation (4.18).

Algorithm MA (Modified Aasen Factorization) Given a symmetric matriz
A € R and a parameter 6 > 0 this algorithm computes a permutation matriz

P, a unit lower triangular matrixz L, and a full matriz T such that
P(A+E)PT =LTL"

and A + E is symmetric positive definite (or symmetric positive semidefinite if

§ = 0). The algorithm attempts to ensure that if Apin < 0 then Apin(A+ E) =~ 4.

1. Compute the factorization PAPT = LTL" using Aasen’s method.

2. Let T=T+ Af, where AT is the minimum Frobenius norm perturbation
that achieves )\min(Tv + ATV) > 4.

Since equalities (4.20)—(4.23) do not depend on the fact that D is block di-
agonal, it is obvious that the discussion in last section for the modified Cholesky
factorization is also valid for the modified Aasen factorization. Moreover since

l;;] <1 and L(:,1) is the first column of the identity matrix, we have
1 < Amax(LL") < trace(LL") = ||L||% < n+ i(n —1)(n — 2), (4.26)
and
1< Ain(LLT) T < [(LLT) o < L7115 < 220, (4.27)

using a bound from [55, Thm. 8.13 and Problem 8.5]. The bounds are smaller than
those in (4.24), (4.25) for the BBK pivoting strategy. We found that the factor
L computed by the modified Aasen factorization was usually better conditioned

than those computed by Algorithm MC when testing over random matrices.
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Objectives (O1)—(03) are duly satisfied. However objective (O4) is less trivial.
The eigenproblem of a symmetric tridiagonal matrix is well studied. We give a

survey of three direct methods implemented in LAPACK [2].

4.5.1 Solving Symmetric Tridiagonal Eigenproblem

Based on [26], [56], we summarize three direct methods implemented in LAPACK
[2] for solving the symmetric tridiagonal eigenproblem, namely the divide and
conquer algorithm, the symmetric QR algorithm and the bisection algorithm
with inverse iteration.

The divide and conquer algorithm writes a symmetric tridiagonal 7" in the

form
T 0
T = H + avvT,
0 Ty
where only the trailing diagonal element of 77, and the leading diagonal element
of Ty, differ from the corresponding elements of 7. The eigensystems of T}; and

Ty, are found by applying the algorithm recursively, yielding Ty, = Q;4;QT and
TQQ = QQAQQ%—' Then we have

4,QT 0
T = Qs + avo”

0 Q24,Q3

= diag(Q:, Q2)(diag(A;, A3) + avv”) diag(Q, Q2)”,

where v = diag(Q1,Q2)Tv. The eigensystem of a rank-one perturbed diagonal
matrix D+ pzz' can be found by solving the secular equation obtained by equat-

ing the characteristic polynomial to zero:

n
22

f(A):HpZde_A:o.

=1

Hence by solving such an equation we can obtain the spectral decomposition
diag(Ay, Ay) + a0 = QAQT.
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Finally, the spectral decomposition of T" is given by

T=UAUT, U =diag(Q:,Q,)Q.
The formation of U is a matrix multiplication and dominates the operation count.

The divide and conquer algorithm was originally suggested by Cuppen [25],
and how to solve the secular equation efficiently was shown by Bunch, Nielson and
Sorensen [13], building on work of Golub [40]. Until recently, it was thought that
extended precision arithmetic was needed in the solution of the secular equation
to guarantee that sufficiently orthogonal eigenvectors are produced when there
are close eigenvalues. However, Gu and Eisenstat [46] have found a new approach
that does not require extended precision.

The divide and conquer algorithm has natural parallelism. Even on serial com-
puters it can be many times faster than the symmetric QR algorithm, though it
needs more workspace. This is currently the fastest method to find all the eigen-
values and eigenvectors for symmetric tridiagonal matrices of dimension larger
than 25 [26]. In the worst case, the divide and conquer algorithm requires O(n?)
flops. However, Demmel [26] found in his experiments over a large set of random
test cases that, on average, O(n*?) flops were required.

Now we look at the symmetric QR algorithm, which finds all the eigenvalues
and optionally all the eigenvectors, of a symmetric tridiagonal matrix. Given a
symmetric tridiagonal matrix 7', the symmetric QR algorithm compute a sequence
T®) of symmetric tridiagonal matrices converging to diagonal form using the QR
factorization and a shift technique. At each stage, we choose a suitable real shift
parameter /i, perform a QR factorization on T®) — 1,1, and obtain T*+1) by

multiplying the factors in reverse order. That is,

T — I = QW RM),

Tk .= RBQW) 4 il
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It is easily shown that

T+ = QTR Q)

This unitary congruence transformation preserves eigenvalues and symmetry of

T and, most importantly, the tridiagonal form.

Let the diagonal entries of T*) be agk), Cee al¥) and the off-diagonal entries
be b(lk), i, .,bnkfl. The shift 4 is chosen to ensure that b;’“jl — 0 as k — oc.
Wilkinson [91] proposed the so-called Wilkinson shift where f, is the eigenvalue

RONEAC!
of [b?k_)l b:(;)l} that is closer to aslk), and is given by

n—1 n
pp = a®) + d — sign(d)\/d? + b, (4.28)

where d = (agg_1 — a!¥)/2 and

+1, ifd>0,

_ -1, ifd<0,
sign(d) = < "
+1, ifd=0,and a,’ > 0,

—1, ifd=0, and a{¥ < 0.

\
Note that when d = 0, both eigenvalues have the same distance from at®). n
this case, we should choose sign(d) so that |ug| is minimized. Wilkinson [91] has
shown that, for this choice of shift, the symmetric QR algorithm is globally, and
at least quadratically, convergent, and is asymptotically cubically convergent for
almost all matrices.

The symmetric QR algorithm is currently the fastest practical method to
find all the eigenvalues of a symmetric tridiagonal matrix, taking O(n?) flops
[26], [41]. However, for finding all the eigenvectors as well, the symmetric QR
algorithm takes a little over 6n® flops on average and is only the fastest algorithm

for small matrices, up to about n = 25. This is the algorithm underlying the

MATLAB command eig.
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Eigenvalues Eigenvectors Size of T Method of Choice

all all n > 25 Divide and conquer algorithm
all all n <25 Symmetric QR algorithm

all none — Symmetric QR algorithm
selected selected — Bisection with inverse iteration

Table 4.2: Method of choice for symmetric tridiagonal matrix 7.

When some but not all eigenvalues and eigenvectors of a symmetric tridiagonal
matrix T are required, the bisection algorithm followed by inverse iteration is
attractive. Recall that if the diagonal entries of T' are aq,...,a, and the off-

diagonal entries are bq,...,b,_; then we have the Sturm sequence recurrence
d; = (Clz' - U)di—l - b?_ldz—Q,

where d; is the determinant of the leading ¢ x ¢ principal submatrix of T'— o[
The number of sign changes in the sequence of d;’s is the number of eigenvalues
of T less than o, denoted count (o), and this fact is the basis for the application
of the bisection method.

Although bisection is a simple and robust algorithm, it can give incorrect re-
sults if the function count (o) is not a monotonic increasing function of . Demmel,
Dhillon and Ren [27] give a thorough analysis of the correctness of the bisection
algorithm for different implementations of the count function and under a variety
of assumptions on the arithmetic. Note that the use of IEEE standard arithmetic
will ensure the correctness of the bisection algorithm in this case which further
confirms the importance of the standard.

Table 4.2 gives guidelines for choosing a suitable method under different cir-
cumstances. For Algorithm MA, since all eigenvalues and eigenvectors are needed,
we should use either the divide and conquer algorithm or the symmetric QR al-
gorithm, depending on the dimension of the matrix.

Another possibility is to compute an optimal 2-norm perturbation for the
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symmetric tridiagonal matrix, for which only its minimum eigenvalue is required.
That is, in the notation of Algorithm MA, T := T + )\min(Tv)[. In this case, the

bisection method is the method of choice.

4.6 Comparison of Algorithms

Here we compare the GMW and SE algorithms, Algorithm MC and Algorithm
MA according to their theoretical aspects.

The bounds (4.10) and (4.16) can be compared with (4.22) for Algorithm MC
and Algorithm MA. The bound (4.22) has the advantage of directly comparing
the perturbation made by Algorithm MC and Algorithm MA with the optimal
one, defined as in (4.17) and evaluated in Theorem 4.4.1, and it is potentially a
much smaller bound than (4.10) and (4.16) if |Amin(A)| < |Amax(A)| and ko (LLT)
is not too large.

All four algorithms satisfy objective (O1) of not modifying a sufficiently pos-
itive definite matrix, though for the GMW and SE algorithms no condition anal-
ogous to (4.20) that quantifies “sufficiently” in terms of Apin(A) is available.
Bounds for x3(A + E) that are exponential in n hold for the GMW and SE
algorithms [78]. The same is true for Algorithm MC and MA; see (4.23)—(4.27).

To summarize, in terms of the objectives of Section 4.1 for a modified Cholesky
algorithm, Algorithm MC and Algorithm MA are theoretically competitive with
the GMW and SE algorithms, with the weakness that if ky(LLT) is large then
the bound on [|E||s is weak.

When applied to an indefinite matrix, the GMW and SE algorithms provide
information that enables a direction of negative curvature of the matrix to be
produced; these directions are required in certain algorithms for unconstrained
optimization in order to move away from non-minimizing stationary points. For

an indefinite matrix, Algorithm MC provides immediate access to a direction of
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negative curvature from the LDL™ factorization computed in step 1 of Algorithm
MC. Because k(L) is bounded, this direction satisfies conditions required for con-
vergence theory [67]. For Algorithm MA, we can use the bisection with inverse
iteration to compute the most negative eigenvalue and its corresponding eigen-
vector of the symmetric tridiagonal matrix to gain information about a direction
of negative curvature.

Finally, we consider the behaviour of the algorithms in the presence of round-
ing error. Algorithm MC is backward stable because the underlying factorization
is [58]: barring large element growth in block LDLT factorization with the BBK
pivoting strategy, the algorithm produces LDLT factors not of P(A + E)P”, but
of P(A+ E + F)PT, where |F|ly < cyul|A + El|; with ¢, a constant. We can
deduce the stability of Algorithm MA using the same reasoning. Although no
comments on numerical stability are given in [37] and [78], a simple argument
shows that the GMW and SE algorithms are backward stable. Apply either algo-
rithm to A, obtaining the Cholesky factorization P(A+ E)PT = RTR. Now apply
the same algorithm to P(A + E)PT: it will not need to modify P(A + E)PT,
so it will return the same computed R factor. But since no modification was
required, the algorithm must have carried out a standard Cholesky factorization.
Since Cholesky factorization is a backward stable process, the modified Cholesky

algorithm must itself be backward stable.

4.7 Numerical Experiments

We have experimented with MATLAB implementations of Algorithm MC, Algo-
rithm MA, and the GMW and SE algorithms. The M-file for the GMW algorithm
was provided by Margaret Wright and sets the tolerance 0 = 2u max{a + (3,1},
where 2u is the value of MATLAB’s variable eps. The M-file for the SE algo-

1/3

rithm was provided by Elizabeth Eskow and sets the tolerance 7 = (2u)Y?. In
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Algorithm MC and Algorithm MA, we set § = /u|| Al .

The aims of the experiments are as follows: to see how well the Frobenius
norm of the perturbation F produced by Algorithm MC and Algorithm MA
approximates the distance pp(A,§) defined in (4.17), and to compare the norms
of the perturbations F and the condition numbers of A+ F produced by the three

algorithms. We measure the perturbation E by the ratios

1E] _ _lEl:

(A0 T DA

which differ only in their normalization and the choice of norm. Both Algorithm
MC and Algorithm MA attempt to make vz close to 1. The quantity s is used
by Schnabel and Eskow [78] to compare the performance of the GMW and SE
algorithms; since E is diagonal for these algorithms, 7, compares the amount
added to the diagonal with the minimum diagonal perturbation that makes the
perturbed matrix positive semidefinite.

First, we note that the experiments of Schnabel and Eskow show that the
SE algorithm can produce a substantially smaller value of v, than the GMW
algorithm. Schnabel and Eskow also identified a 4 x 4 matrix for which the

GMW algorithm significantly outperforms the SE algorithm:

1890.3 —1705.6 —315.8 3000.3

1538.3  284.9 —2706.6
, (4.29)

52.5 —501.2

4760.8

with A\(A) = {-0.39, —0.34, —0.25, 8.2 x 10*}. We give our results in Table
4.3; they show that Algorithm MC and Algorithm MA can also significantly
outperform the SE algorithm.

We ran a set of tests similar to those of Schnabel and Eskow [78]. The matrices

A are of the form A = QAQT, where A = diag();) with the eigenvalues ); from one
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MC MA GMW  SE
ve 1.3 1.1 27 37x10°
v 17 11 27 2.8 x10°

Table 4.3: Measures of F for the 4 x 4 matrix (4.29).

n: 25 50 100
max 523 2188 8811
mean 343.9 1432.8 5998.4

Table 4.4: Number of comparisons for the BBK pivoting strategy.

of three random uniform distributions: [—1,10%], [-1,1] and [-10*, —1]. For the
first range, one eigenvalue is generated for the range [—1,0) to ensure that A has
at least one negative eigenvalue. The matrix () is a random orthogonal matrix
from the Haar distribution, generated using the routine gmult from the Test
Matrix Toolbox [54], which implements an algorithm of Stewart [83]. For each
eigenvalue distribution we generated 30 different matrices, each corresponding to
a fresh example of A and of Q). We took n = 25,50, 100. The ratios vz and 7, are
plotted in Figures 4.1-4.3. Figures 4.4-4.6 plot the condition numbers ks(A + F)
for n = 25,50,100; Table 4.4 reports the number of comparisons used by the
BBK pivoting strategy on these matrices for each n; the maximum number of
comparisons is less than n? in each case.

In Figure 4.7 we report results for three nonrandom matrices from the Test
Matrix Toolbox. Clement is a tridiagonal matrix with eigenvalues plus and minus
the numbers n — 1, n — 3, n —5,...,(1 or 0). Dingdong is the symmetric n x n
Hankel matrix with (i, j) element 0.5/(n — i — j + 1.5), whose eigenvalues cluster

around 7/2 and —7/2. Ipjfact is the Hankel matrix with (7, j) element 1/(i+7)!.

Our conclusions from the experiments are as follows.
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a) n=25, eig. range[-1,10000] b) n=25, eig. range[-1,10000]
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(R NN \//\\»/\ //\ T' AN [9¢ /(/\//\ //\
VA RN A N 7oA \
10 W 10 W
10° 10°
0 10 20 30 0 10 20 30
matrix matrix
c) n=25, eig. range[-1,1] d) n=25, eig. range[-1,1]
10° 10°

matrix matrix
e) n=25, eig. range[-10000,-1] f) n=25, eig. range[-10000,-1]

3 2
e T A AN
Nl - ———

)

0 0

0 10 20 30 0 10 20 30
matrix matrix

Figure 4.1: Measures of E for 30 random indefinite matrices with n = 25. Key: GMW
—, SE ---, MA -.-., MC - - -.

a) n=50, eig. range[-1,10000] b) n=50, eig. range[-1,10000]

10 10
2 A I 2 \ I
10 n _ \ 10 \ / - \
,_101/\,\/\1\/“\/\1//“ 101!\/\/\/\1\\ \7\/,/\/»
10° 10°
0 10 20 30 0 10 20 30
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) c) n=50, eig. range[-1,1] ) d) n=50, eig. range[-1,1]
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110’ N N 10’ SIS N TN e
/V<~: 7\/:1':\\\/\/: »V_\/\//‘ s
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matrix matrix
e) n=50, eig. range[-10000,-1] ) n=50, eig. range[-10000,-1]
4 3
o 2
12 o~
e 11—
0 0
0 10 20 30 0 10 20 30
matrix matrix

Figure 4.2: Measures of E for 30 random indefinite matrices with n = 50. Key: GMW
—,SE -+, MA -.-., MC - - -.
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a) n=100, eig. range[-1,10000]
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Figure 4.3: Measures of E for 30 random indefinite matrices with n = 100. Key: GMW

~ SE -+, MA --., MC - - -,

b) n=100, eig. range[-1,10000]
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d) n=100, eig. range[-1,1]

30

matrix
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Figure 4.4: Condition numbers x9(A+ E) for 30 random indefinite matrices with n = 25.
Key: GMW —, SE - -

-, MA --., MC - - -,
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a) n=50, eig. range[-1,10000]
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b) n=50, eig. range[-1,1]
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Figure 4.5: Condition numbers x9(A+ E) for 30 random indefinite matrices with n = 50.
Key: GMW —, SE -+, MA --., MC - - -.

a) n=100, eig. range[-1,10000]
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Figure 4.6: Condition numbers k3(A + E) for 30 random indefinite matrices with
n = 100. Key: GMW —, SE -+, MA -.-., MC - - -,
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a) clement(n,1) b) clement(n,1)

Figure 4.7: Measures for three nonrandom matrices. Key: GMW —, SE ---, MA -.-.,
MC - - -.

1. None of the four algorithms is uniformly better that the others in terms of
producing a small perturbation E, whichever measure vz or v is used. All
four algorithms can produce values of vr and v, significantly greater than

1, depending on the problem.

2. Algorithm MC produced vr of order 10 for the eigenvalue distribution
[—1,10%] for each n, and the values of ko LL") were approximately 1007 in
each such case. However, often v was of order 1 when x(LLT) was of order
10% or 103, so a large value of ky(LL") is only a necessary condition, not a
sufficient one, for poor performance of Algorithm MC; in other words, the
bounds of Section 4.4 can be weak. Similar observations hold for Algorithm

MA.

3. The condition numbers ky(A + E) vary greatly among the algorithms. Our
experience is that for 6 = \/ul|A[|s Algorithm MC fairly consistently pro-

duces conditions of order 100//u; the condition number is, as predicted by
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(4.23), much smaller for the random matrices with eigenvalues on the range
[—10%, —1], because the algorithm attempts to perturb all the eigenvalues
to ¢ and (4.23) is reduced to ko(A + E) < ko(LL"). Again, similar con-
clusions hold for Algorithm MA. The condition numbers produced by the

GMW and SE algorithms vary greatly with the type of matrix.

The fact that g is close to 1 for the random matrices with eigenvalues in the
range [—10%, —1] for Algorithm MC and Algorithm MA is easily explained. Let
A be negative definite. Then Algorithm MC computes P(A + E)PT = L(6I)L".

Hence

o IE|r
(D on<s(Xi = 8)H)1/2
|E|r _|A—6-PTLL"P|s
1Al ~ Tl
|Allr + 6| ZL7)5
= I
(4n* — 3n)d
= A

IN

using (4.24). Meanwhile, Algorithm MA computes P(A+ E)PT = LQ(51)QT LT,
where QQ7 = I. We have

R -
(Z,\igé()‘i - 5)2)1/2
|E|lr |A—6-PTLQQTLTP||p
- JAle [ Al
|Allr + 0||LL ||
- !AHF
(n*—n+2)0
= U

using (4.26). So 7r can exceed 1 only by a tiny amount for Algorithm MC and
Algorithm MA applied to a negative definite matrix, irrespective of ro( LLT). Tt
is an open question to explain why vr are approximately 2 and 4 for the GMW

and SE algorithms respectively for this class of matrices.
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4.8 Concluding Remarks

Algorithm MC, based on a block LDLT factorization with the bounded Bunch—
Kaufman pivoting strategy, and Algorithm MA, based on Aasen’s LTL" factor-
ization with partial pivoting, merit consideration as alternatives to the algorithms
of Gill, Murray and Wright, and Schnabel and Eskow. The results in Section 4.7
suggest that the new algorithms are competitive with the GMW and SE algo-
rithms in terms of the objectives (O1)—(0O4) listed in Section 4.1. Algorithms MC
and MA have the advantages that the extent to which they satisfy the objectives
is neatly, although not sharply, described by the bounds of Sections 4.4 and 4.5.
Algorithms MC and MA can be implemented by augmenting existing software
with just a small amount of additional code. In particular, for Algorithm MC, we
can use the efficient implementations for both dense and sparse matrices written
by Ashcraft, Grimes and Lewis [6], which make extensive use of level 2 and
3 BLAS for efficiency on high-performance machines. For Algorithm MA, the
LTLT factorization is implemented in IMSL Fortran 90 MP Library [48], [90].
Since all four algorithms can “fail”, that is, they can produce unacceptably
large perturbations, it is natural to ask how failure can be detected and what
should be done about it. The GMW and SE algorithms produce their (diag-
onal) perturbations explicitly, so it is trivial to evaluate their norms. For Al-
gorithm MC and Algorithm MA, the perturbations to A have the form F =
PTL(D + F)L"P — A, which would require O(n?) operations to form explicitly.
However, we can estimate || E||« using the norm estimator from [52] (which is im-
plemented in LAPACK). The estimator require the formation of products Ex for
certain vectors x, and these can be computed in O(n?) operations; the estimate
produced is a lower bound that is nearly always within a factor of 3 of the true
norm. For all four algorithms, then, we can inexpensively test whether the per-

turbation produced is acceptably small. Unfortunately, for none of the algorithms
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is there an obvious way to improve a modified factorization that makes too big
a perturbation; whether improvement is possible, preferably cheaply, is an open
question. Of course one can always resort to computing an optimal perturbation
by computing the eigensystem of A and using the formulae in Theorem 4.4.1.
We note that we have approached the problem of modified Cholesky factor-
ization from a purely linear algebra perspective. An important test of a modified
Cholesky algorithm is to evaluate it in an optimization code on representative
problems, as was done by Schlick [77] for the GMW and SE algorithms. Such
testing is beyond the scope of this thesis but would produce valuable information

about the practical performance of the different algorithms.
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Chapter 5
Modifying the Inertia of Matrices

Arising in Optimization

5.1 Introduction

A block 2 x 2 partitioning
H A

AT —M

of a symmetric matrix C' arises in a number of applications, including constrained
optimization, least squares problems and Navier—Stokes problems, as explained
in the next section. The matrix M is positive semidefinite, but H can be in-
definite, depending on the application. In constrained optimization, a “second
order sufficiency” condition leads to the problem of perturbing H so that C' has a
particular inertia. It is this problem that motivated our work. We can view this
chapter as an attempt to extend the notion of modified Cholesky factorization to
constrained optimization.

We present some background material on congruence transformations in Sec-
tion 5.3, including an extension of Ostrowski’s theorem (Theorem 4.4.2) to trans-
formations with a rectangular matrix. In Section 5.4 we derive some useful inertia
properties of the matrix C. How to make a minimal norm (full) perturbation to
increase the number of nonnegative eigenvalues of a symmetric matrix by a given
amount is shown in Section 5.5. The main result of this chapter is in Section
5.6, in which we derive, for any unitarily invariant norm, a perturbation of H
(only) of minimal norm that increases the number of nonnegative eigenvalues of

C by a given amount. For optimization applications, another way of writing the
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second order sufficiency condition is based on projecting H into the null space of
A. We use this approach in Section 5.7 to derive another expression for a minimal
norm perturbation to H that achieves the sufficiency condition. In Section 5.8 we
consider how to implement our results in the optimization application and show
that directions of negative curvature are produced as a by-product of the compu-
tation. Numerical experiment results are reported in Section 5.9 and concluding

remarks are given in Section 5.10.

5.2 A Symmetric Block 2 x 2 Matrix and its Ap-
plications

Any symmetric matrix C' can be written in the form

n | H AT
C = ,
m|A —M

where H € R™" and M € R™*™ are symmetric and A € R**™. The reason
for using a block 2 x 2 partitioning and for placing a minus sign in front of the
(2,2) block is that C' then conveniently represents some particular cases arising

in applications, which we now describe in roughly decreasing order of generality.

1. When M is diagonal and positive definite, C' is the “primal-dual” matrix
arising in certain interior methods for the general nonlinear programming
problem [32], [33]. Here, H is the Hessian of the Lagrangian function and
AT is the Jacobian of the constraint functions. The matrix C' also arises
in penalty function methods for nonlinear programming, with M a positive
multiple of the identity matrix [43]. In these applications both m < n and

m > n are possible.
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2. When M = 0, C is the Karush-Kuhn-Tucker (KKT) matrix, which arises

when Newton’s method or a quasi-Newton method is applied to the problem
min F(z) subject to ATx = b, (5.1)
where F' : R* — R and m < n, [20, p. 123], [34], [44]. To be precise,
Newton’s method leads to the equations
Hy Al |pk — Gk
AT 0 | M\ 0
where H is the Hessian of F' or an approximation to it, ¢g is the gradient

of F, p is a search direction, and A is a Lagrange multiplier, and where a

subscript £ denotes evaluation at the kth iterate.

3. For M = 0 and H = diag({,, —I,) where p + ¢ = n, C is the augmented

system matrix arising in the indefinite least squares problem
min(b — Az)"H(b — Ax),
where m > n [16]. This problem reduces to the standard least squares

problem when ¢ = 0.

4. If H and M are positive definite, then C' matches precisely the definition
of a symmetric quasidefinite matrix [89]. Such matrices arise in interior
methods for linear and quadratic programming and much is known about

the existence and stability of their LDLT factorizations [38], [89).

5. Matrices with H positive definite and M = 0 arise in discretized incom-
pressible Navier-Stokes equations [79], and their spectral properties are

important in the development of preconditioned iterative methods [30].

6. The matrix with H = 61 and M = 61 (§ > 0) appears in the augmented

system corresponding to the damped least squares problem
min [|b — Az|[3 + 6%[]3;
x
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see Saunders [76].

7. For H positive definite and M = 0, C' is the augmented system matrix
arising in the generalized least squares problem min, (b — Ax)" H='(b— Ax)

(m > n) [8, Section 4.3.2]; H = I gives the standard least squares problem.

In quasi-Newton methods for the linear-equality constrained problem (5.1) it is
desirable that the Hessian approximation H satisfy the “second order sufficiency”

condition [44]
p" Hp > 0 for all nonzero p such that A”p = 0. (5.2)

One equivalent condition is that the projected Hessian Z7 H Z be positive definite,
where the columns of Z form a basis for the null space null(A”). Less obviously,

the condition (5.2) is also equivalent to requiring the so-called KKT matrix

n | H AT
K = , (5.3)
m|A 0

to have a certain inertia, as shown by Gould [42]. Recall that the inertia of
a symmetric matrix is an ordered triple (iy,i i), where i, is the number of
positive eigenvalues, 7_ is the number of negative eigenvalues, and 7 is the number

of zero eigenvalues. We write
inertia(A) = (i (A4),i_(A),i(A)).

Theorem 5.2.1 (Gould) Let A be of full rank m. The condition (5.2) holds if
and only if K has the inertia (n,m,0).
Proof: Let A have the QR factorization
R R
A=Q = [Y Z] :
0 0
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where Y € R*™*™ Z € R™*("™) and R € R™*™. Then

R R
H Q Q o] | QTHQ Q 0
K= 0| | = 0

0 I

woo@r o w0 [ M

YTHY YTHZ R

~ |\ ZTHY ZTHZ 0| =:K,

| R 0 0
where ~ denotes congruence (in fact, this first transformation is an orthogonal

similarity which preserves the symmetry and the eigenvalues). Now define the

nonsingular matrix

I, 0 —W"HYR™"
W=10 IL.n —ZTHYRT
0 0 RT

It is straightforward to verify that

0 0o I,
WEKW" =10 ZTHZ 0
I, 0 0

By constructing eigenvectors [e; 0 ¢;]7 and [e; 0 — ¢;]” where e; is the ith row
of the identity matrix [,,, it is easily seen that the eigenvalues of WEWT are 1
and —1, each repeated m times, together with the n — m eigenvalues of ZTH Z.
Since Z spans the null space of A", ZTHZ is positive definite if and only if (5.2)
holds, which completes the proof. 0O

The requirement (5.2) and Theorem 5.2.1 the problem give rise to the problem
of perturbing H so that K achieves the desired inertia (n, m, 0) [42]. The matrix A
must not be perturbed because this would correspond to changing the constraints

in (5.1). The same problem is relevant for the primal-dual matrix with M diagonal
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and positive semidefinite [32]. We find a minimal-norm solution to a more general
version of this inertia perturbation problem in Section 5.6. In Section 5.7 we
consider an alternative approach to perturbing H to satisfy (5.2), based on the

projected Hessian. First, we develop some necessary background theory.

5.3 Rectangular Congruence Transformations

Sylvester’s inertia theorem says that the inertia of a symmetric matrix is preserved
under a congruence transformation. Ostrowski’s theorem (Theorem 4.4.2) [60,
Thm. 4.5.9], [69], [92] goes further by explaining by how much the magnitudes
of the eigenvalues can change. In the following statement of Ostrowski’s theorem
(60, Cor. 4.5.11] the transforming matrix X is permitted to be singular, in which
case the transformation matrix X7 AX is not a congruence transformation and
can change the inertia. Throughout this chapter the eigenvalues of a symmetric
n x n matrix are ordered \; < --- < A, and X\;(A) denotes the ith smallest

eigenvalue of A.

Theorem 5.3.1 (Ostrowski) Let A € R™™ be symmetric and X € R*™*".
Then for each k, k = 1:n,

M(XTAX) = 0\, (A)
where A\ (XTX) < 0, < A\ (XTX). O

We now generalize Ostrowski’s theorem to “rectangular congruences”, in which
the transformating matrix X is nonsquare. Such transformations change the di-
mension and hence the inertia, but for full rank X the amount by which inertia
can change depends on the difference of the dimensions of X, as shown in the
corollaries below. First, we consider matrices X with at least as many rows as

columns.
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Theorem 5.3.2 Let A € R™™ be symmetric and let X € R"™ (n > m). Then
)\k(XTAX) = Hkﬂka k= 1:m,

where

and A\ (XTX) <0, < \n(XTX).

Proof: Let

X=U yT
0

be a singular value decomposition, where U € R**™ and V' € R™*™ are orthogonal

and ¥ € R™*™ is diagonal. Then

5 _
XTAX =V[ET 0UTAU VI =v(ZTAL D)V,
0

where ZH is the leading principal submatrix of order m of A = UTAU. By

Ostrowski’s theorem,
)\k(XTAX) = )\k(ZTgnE) = )\k(;{ll)eka

where

MXTX)=M(ETD) <0, < A\p(278) = M (XTX).

Cauchy’s interlace theorem [71, p. 186] shows that
)\k (A) = )‘k (Z) S )\k (;{11) S )\k+nfm(g) = )‘k+nfm(A): k= Lma

which yields the result. 0O

In the case where X has orthonormal columns (so that 6, = 1), Theorem
5.3.2 reduces to the Poincaré separation theorem [60, Cor. 4.3.16], [84, Cor. 4.4,
p. 198].
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Corollary 5.3.3 Let A € R be symmetric and let X € R"™™ (n > m) be of
full rank. Then

inertia(A)— (n—m,n—m,n—m) < inertia(XT AX) < inertia(A)+(0,0,n—m). O
The next result covers the case n < m.

Theorem 5.3.4 Let A € R™*" be symmetric and let X € R"™ (n < m). Then
XTAX has m—n zero eigenvalues, which we number Ay, ..., Ap_n; the remaining

eigenvalues satisfy
Ak (XTAX) = 0\ (A), k=1,
where Ap_ni1(XTX) <0 < An(XTX).

Proof: Let

be a singular value decomposition, where U € R™*™ and V' € R"*" are orthogonal

and ¥ € R"*" is diagonal. Then

b)) STVTAVE 0 .
XTAX =U[X" o)V AV Ul =uU Ul = UAUT,
0 0 0

which shows XTAX and A have the same eigenvalues under the orthogonal sim-
ilarity transformation. It is easily seen that A has m — n zero eigenvalues. Now

apply Ostrowski’s theorem on the (1, 1) block of A, we have for k = 1,
Amnik(ETVTAV ) = G\ (A),

where A\p_pnp1 (XTX) = \(ZTX) <0, < \(2TX) = M\n(XTX). This completes
the proof. O

A direct consequence is as follows.
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Corollary 5.3.5 Let A € R be symmetric and let X € R*"™™ (n < m) be of

full rank. Then

inertia(X”7 AX) = inertia(A) + (0,0,m —n). O

5.4 Inertia Properties of

In this section we derive some inertia properties of the matrix

W | H AT
C= . (5.4)
m| A —M

Assume that H is nonsingular. We have

I ol|lm a4 ¥ A ]
—ATH q| AT —M| [0 M- ATH A
|u 0 | [r 54
o —m—atmoal o 1|

which shows that

H 0
C~ ) (5.5)
0 —M—ATH 1A
This congruence is the basis of the following lemmas, the first of which is contained

in [49, Thm. 3].

Lemma 5.4.1 If H is nonsingular, M = 0 and A has full rank then inertia(C') >

(m,m,0) if n > m and inertia(C) = (n,n,m —n) if n < m.

Proof: Let inertia(H) = (a,b,0) and inertia(—ATH *A) = (p,q,r). Then
from (5.5) we have

inertia(C) = (a +p,b+q,r).
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First, suppose n > m. By Corollary 5.3.3 we have p > b — (n — m), so that
a+p>a+b—(n—m)=m. Similarly, b+ ¢ > m. If n < m then Corollary 5.3.5

shows that p = b, ¢ = @ and r = m — n, and the result follows. O

Lemma 5.4.2 If H is positive definite and M is positive semidefinite then
inertia(C) = (n,m — p, p),

where 0 < p < m. If A has full rank or M is positive definite then p = 0.

Proof: The result is a direct consequence of (5.5). O

The next lemma shows the somewhat surprising property that the inertia of C'
is independent of H when all the blocks are square, M = 0 and A is nonsingular.
This result is given by Haynsworth and Ostrowski [49], who attribute it to Carlson
and Schneider [15].

Lemma 5.4.3 Let m = n and M = 0. Then C is nonsingular if and only if A

is nonsingular, and in this case inertia(C') = (n,n,0).

Proof: The nonsingularity condition follows from

A H
det(C) = (—1)" det = (—1)" det(A)2.
0 AT

The inertia is obtained as a special case of Theorem 5.2.1, since (5.2) is trivially
satisfied. O

There does not seem to be any useful characterization of the eigenvalues of
C. The most general matrix for which the eigenvalues are known explicitly is the

matrix

B(a, B8) = . AeRvm, (5.6)
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Saunders [76] shows that if A has rank p with nonzero singular values oy, i = 1:p,

then
Yo —B) % (02 + Ha+ /)", i=1yp,
A(B(a, ) =4 a, n — p times, (5.7)
—B, m — p times.

The conclusions of Lemmas 5.4.1-5.4.3 are readily verified for this matrix.
Finally, we give inequalities that bound the eigenvalues of C' away from zero,
which is of interest for investigating conditioning. This lemma is a restatement

of the “separation theorem” of v. Kempen [88].

Lemma 5.4.4 If H is positive definite and M 1is positive semidefinite or positive

definite, then the eigenvalues \; of C' satisfy
)\1 S T S )\m S _)\min(M) < )\min(H) S )\m+1 S e S )\m+n7 (58)

Proof: Let A be an eigenvalue of C' and x a corresponding eigenvector and

write Cz = A\x as
H A Y Y

=\
AT M| |z z
Premultiplying the first equation of the pair by y” and the second by 27, and
subtracting, yields
y Hy — My y=—2"Mz— "2,

or
yT(H — M)y + 27 (M + X )z = 0. (5.9)

If —Amin(M) < XA < Amin(H) then H — X and M + AI are positive definite and
(5.9) yields a contradiction since y and z are not both zero. The inequalities (5.8)

now follow from Lemma 5.4.2. O
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That the bounds on A, and A, in Lemma 5.4.4 are attainable is shown by
(5.6) and (5.7). (For the interior eigenvalues, inequalities (5.8) can, of course, be
improved by applying Cauchy’s interlace theorem.)

A bound for the 2-norm condition number x5 (C) = ||C||2||C ||z is immediate.
Lemma 5.4.5 If H and M are positive definite then

k2(C) < [|Cllamax{[|[H~ o, [M 7|2} O

5.5 Modifying the Inertia: A General Pertur-
bation

Let A € R”" be symmetric. We denoted by u#)(A) the distance from A to
the symmetric matrices with at least k£ more nonnegative eigenvalues than A

(assuming that A has at least k negative eigenvalues):

B (A) = min{[|AA| : AA = AAT,
(5.10)
i (A4 AA) +ig(A+ AA) > i (A) +ig(A) + K.

The distance is characterized by the following theorem, which generalizes a result
giving the distance to the nearest symmetric positive semidefinite matrix [51].
Recall that a norm || - || is a unitarily invariant norm on R**" if |[UAV|| = ||A]|
for all orthogonal U and V. We will need the characterization that any unitarily
invariant norm is a symmetric gauge function on the singular values, that is,
|A|| = ¢(o1,...,0,), where ¢ is an absolute vector norm that is invariant under

permutations of the entries of its argument [60, Thm. 7.4.24],[84, Thm. 3.6, p. 78].

Theorem 5.5.1 Let the symmetric matrix A € R**™ have the spectral decompo-

sition A = QAQ", where Q is orthogonal and A = diag()\;) with

M <<y <0< Ay <o <Ay,
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and assume that p > k. Then for any unitarily invariant norm, an optimal

perturbation in (5.10) is

_)\i; 1=p—k+1: ,
AA = Qdiag(rn)Q", 7= P P (5.11)

0, otherwise.

and
pM(A) = ¢(n,. . 7).
Proof: A generalization of the Wielandt—Hoffman theorem [60, Thm. 7.4.51],
[84, p. 205] says that if A and A+ AA are symmetric then
[AA] > || diag(Ai(A + AA) = Ai(A))]]
for any unitarily invariant norm. If AA is a feasible perturbation in (5.10) then
|AA| > || diag(0,...,0, \p_gr1(A+ AA) — Ay g1 (A), ...,
Ap(A+ AA) — N (A),0,...,0)
> || diag(0,...,0, =Ap—g41(A), ..., =Ap(A),0,...,0)|],
where we have used \,(A + AA) > --- > X\, 11(A+ AA) > 0 and the gauge
function property of the norms. It is easily seen that equality is attained for the

perturbation given in the statement of the theorem and that this perturbation is

feasible. O

5.6 Modifying the Inertia: A Structured Per-
turbation

Returning to the partitioned matrix (5.4), we are interested in finding a pertur-
bation AH such that
H+AH A
AT -M

C+ AC =
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has a given inertia. For the analysis in this section, C' can be regarded as a general
block 2 x 2 symmetric matrix—we will not need A to have full rank or the diagonal
blocks to process any definiteness properties, and m and n are arbitrary.

For the KKT matrix, practical interest is in increasing the number of positive
eigenvalues (in view of Theorem 5.2.1 and Lemma 5.4.1), so we define, analogously

to (5.10),

Y®(C) = min{||AH|| : AH = AHT, 65.12)
5.12
i (C+ AC) 4+ io(C+ AC) > i (C) 4+ ip(C) + k}.

Clearly, an optimal AH in (5.12) can be taken to be positive semidefinite and of
rank k, hence of the form AH = VVT with V € R™* (k < n). Our solution to
this problem is based on the following lemma. The lemma is not new; essentially

the same result can be found in [4, Lem. 2.1] and [5, Cor. 2.2], for example.

Lemma 5.6.1 Let A € R™" be symmetric and nonsingular and let W € R**k,
Then iy (A+WWT) +ig(A+ WWT) =i (A) +io(A) + k if and only if —I —

WTA-YW is positive semidefinite.

Proof: We have the congruences

n k

B_n[A W]N[A 0 |
J

v ) Lo o wraow
and, for a suitable permutation I7,

T
P L 0

w A 0 A+wwt

It follows that

inertia(A) + inertia(—I, — WTA™'W) = inertia(—1I}) + inertia(A + WWT),
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that is,
inertia(A + WW7) = inertia(A) + inertia(—I;, — WTA™'W) — inertia(—1}).

The result is immediate. O

We apply Lemma 5.6.1 with A the matrix C' (assumed to be nonsingular) and

k

n |V
W =

m | 0

The lemma tells us that we need to minimize ||[V'VT]| subject to

yr gr] o v € RO (5.13)
0

having all its eigenvalues less than or equal to —1. Writing G = C!(1:n, 1:n),

this constraint is
NVIGY) < —1, i=1k. (5.14)

By Corollary 5.3.3, a matrix satisfying (5.14) exists only if G has at least k
negative eigenvalues, which we assume to be the case. The following lemma and
corollary show how to minimize ||[VV7|| for any unitarily invariant norm subject

to (5.14).

Lemma 5.6.2 Let A € R™*" be symmetric with the spectral decomposition A =

Q diag(\;)QT, where Q is orthogonal and
Algg)\p—1§0<)\p§§)\n

Let X € RV with k < n and assume that p < n — k + 1. All matrices X that

minimize all the singular values of X subject to satisfying the inequalities
M(XTAX) > 1, =1k, (5.15)
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are given by
X =Q(1:n,n — k4 L:n)diag(Ay i1, .-, M) Y2V, (5.16)
where V- € R¥** is an arbitrary orthogonal matriz.

Proof: Let

S
X=Uxv", Y= : S = diag(o;) € RF**
0

be the singular value decomposition of X. Then
XTAX — I =VX"UTAUSVT - T =V(SBS - T)V",

where B = (UTAU)(1:k,1:k). The constraint (5.15) is therefore equivalent to

SBS — I being positive semidefinite, which implies that

Q=

We wish to maximize the reciprocals o; 2.

Now the diagonal of the symmetric
matrix B is largest in modulus when it contains the eigenvalues of B, that is,
when B is diagonal, (5.17) is equivalent to (5.15). This fact is easily shown. Let
M € R™™™ be symmetric. Then, for the Frobenius norm, we have

i#] i i
Equality holds in the inequality, and hence ), m3; is maximized, when m;; = 0

for i # j. Therefore mqy,..., m,, must be the eigenvalues of M.

Hence for optimality we need to choose U = Q(1:n,n — k + 1:n) and then,

-1/2

to attain the bounds in (5.17), o; = A 7}7,

(note that the o; are arranged in

decreasing order). The matrix V' is arbitrary. 4

Corollary 5.6.3 Under the condition of Lemma 5.6.2, the matriz (5.16) mini-

mizes || X XT|| subject to (5.15) for any unitarily invariant norm.
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Proof: The singular values of X X7 are the squares of the singular values of
X, which are minimized by the matrix (5.16). The result follows from the gauge
function property of unitarily invariant norms. O

We now summarize our findings in a theorem.

Theorem 5.6.4 Let H € R™*" and M € R™ ™ be symmetric and A € R"*"™,

and let
H A

AT —M
Assume C is nonsingular and let G = C~1(1:n,1:n). There exists a feasible per-
turbation in the definition of Yv*)(C) if and only if G has at least k negative
eigenvalues. Let G = Q diag(v;)Q" be a spectral decomposition, where Q is or-
thogonal and vy < -++ < v,. Then, for any unitarily invariant norm, an optimal

perturbation in (5.12) is

AH = —Qdiag(yy", ..., 7, 0,...,00Q" (5.18)
and, in terms of the underlying gauge function ¢,

RO = d(y Y, L0, 0). O (5.19)

The perturbation (5.18) is full, in general, so may not be a suitable pertur-
bation when H is large and sparse. It is natural, therefore, to consider diagonal
perturbations. The next result shows that a perturbation consisting of a suitable
multiple of the identity matrix is also optimal in the 2-norm. This result can be

deduced from Theorem 5.6.4, but we give an independent proof for completeness.

Theorem 5.6.5 Under the same condition as in Theorem 5.6.4, an optimal per-

turbation in (5.12) in the 2-norm is

AH = -y '1. (5.20)
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Proof: Consider perturbations to C' of the form AC = WWT with

W = . (5.21)

It is straightforward to prove an analogue of Lemma 5.6.1 which says that if
A € R™" is symmetric and nonsingular, W € R™* and p < k, then i, (A +
WWT) +ig(A+WWT) =i, (A) +ig(A) + p if and only if —I; — WTA™'W has
exactly p nonnegative eigenvalues. Applying this result to (5.21) we find that
AH = WWT is a feasible perturbation in (5.12) if and only if —I,, — oG has k
nonnegative eigenvalues, where G = C~'(1:n, 1:n). We are assuming that G has
at least k nonnegative eigenvalues, so the minimal value of a? is —1/~;. This
gives | AC||s = —1/7k, which, in view of (5.19), shows that (5.21) is an optimal
perturbation in the 2-norm. 0O

Note that whereas the perturbation (5.18) increases i, + iy by exactly k, the
perturbation (5.20) will increase it by more than & if v, = ¢ = -+ - = Y4, with

r>1.

5.7 A Projected Hessian Approach

For the matrix C' with n > m, there is an alternative way to find a perturbation
to H of minimal norm such that the second order sufficiency condition (5.2)
is satisfied. As noted earlier, the condition (5.2) is equivalent to the projected
Hessian ZT HZ being positive definite, where the columns of Z € R**(»~™) form
a basis for null(A”), which we will take to be orthonormal. Therefore we are

interested in solving the problem

min{||AH|| : Z"(H + AH)Z is positive semidefinite}. (5.22)
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From Theorem 5.5.1 we know that an optimal arbitrary perturbation E that

makes ZT HZ + E positive semidefinite is, for any unitarily invariant norm,
E = U diag(max(—;, 0))U”, (5.23)

where ZTHZ = U diag(p;)U" with py < -+ < i, is a spectral decomposition.
Hence any feasible AH in (5.22) satisfies

1Bl < 127 AHZ| < |27 | AH||| Z||: < [[AH],

using an inequality for unitarily invariant norms from [61, p. 211]. But the
perturbation (5.23) is achieved in (5.22) by setting AH = ZEZ", and ||AH|| <
N Z|I1EN| 272 < || E||. We conclude that

AH = ZU diag(max(—;, 0)UT ZT (5.24)

is a solution to (5.22) for any unitarily invariant norm. For the 2-norm, another

solution is
AH = max(—p,0) 22", (5.25)

For the special case of the KKT matrix defined as in (5.3), for which (5.2) is
equivalent to inertia(K) = (n,m,0) by Theorem 5.2.1, the perturbation (5.24)
is, necessarily, of the same norm as (5.18) for £ = n — i, (K) in Theorem 5.6.4,
although this equivalence is not obvious from the formulae.

When M is positive definite, or M is positive semidefinite and A has full
rank, Lemma 5.4.2 shows that we can achieve the desired inertia (n,m,0) by
choosing AH to make H + AH positive definite. Theorem 5.5.1 with k£ = p shows
that the smallest value of ||AH||y for which H + AH is positive semidefinite is
max(—Amin(H),0). By definition, this perturbation is at least as large as the
optimal ones (5.18) and (5.24), and from (5.24) we have

|AH]|; < max(—Amin(ZTHZ),0),
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which can be arbitrarily smaller than max(—Anin(H),0). We note, in particular,
that the perturbation (5.18), (5.20), (5.24) and (5.25) all have 2-norms uniformly
bounded by ||H]|2, which is an important property for optimization application
44].

We give a numerical example for illustration. Consider the KKT matrix

-1 1 |0
K= 1 -100|1 |, MK)={-1.00x10% —9.90 x 107",1.01 x 1072},
0 1 |0

where the eigenvalues are given to three significant figures. Hence inertia(K) =

(1,2,0), and we want to change the inertia to (2,1,0). Since

we find immediately from Theorem 5.6.4 with £ = 1 that

10
AH = (5.26)

0 0

is a matrix of minimal norm, for any unitarily invariant norm, that changes the
inertia of K to (1,1,1); indeed
0 1 0
K+AK =11 —100 1|, MK+ AK)={-1.00x 10%0,2.00 x 10 %}.
0 1 0
For the projected Hessian approach we have Z = [1 0], ZTHZ = —1 and (5.24)
yields the perturbation (5.26). To achieve the inertia (2,1, 0) that is required for
the condition (5.2) to hold, we can replace AH by (1 + ¢)AH for any € > 0.

In order to perturb H to make it positive definite, which also produce the

desired inertia, which must make a perturbation of 2-norm at least —Apin(H) =
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1.00 x 102, which is two orders of magnitude larger than the minimal-norm per-

turbation (5.26).

5.8 Practical Algorithm

We now turn to the optimization applications. We consider the situation where
a linear system C'x = b must be solved, but C needs to be perturbed in its (1, 1)
block, if necessary, to ensure that it has the inertia (n,m,0).

We assume that a block LDL™ factorization of C' is computed,
pPCcpPT =LDL",

where L is unit lower triangular and D is block diagonal with blocks of dimension
1 or 2; P is a permutation matrix that can be chosen according to one of various
pivoting strategies mentioned in Chapter 2. Since C' and D have the same inertia
it is trivial to evaluate the inertia of C. If iy (C) is less than n then Theorem 5.6.4
shows that to determine the optimal perturbation (5.18) we need to compute
the £ = n — i, (C) most negative eigenvalues of G = C~!(1:n,1:n) and their
corresponding eigenvectors; for the optimal 2-norm perturbation (5.20) it suffices
to determine the kth most negative eigenvalue of G. To confirm that there are k

negative eigenvalue of GG, we apply Cauchy’s interlace theorem, which yields
Mi(G) < Xigm(C™H), i=1m.

Hence if C has only i, (C') < n positive eigenvalues then G has at least n — i, (C)
negative eigenvalues.

Since C' may be large and sparse it is undesirable to form G explicitly. There-
fore we suggest that the k£ most negative eigenvalues of G and their corresponding

eigenvectors be computed using the Lanczos algorithm, which requires only the
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ability to form matrix-vector products with G. To form y = Gz we note that

v _ o |?

z 0

where z € R™ is not of interest. Hence y is the first n components of the solution

to the linear system

which can be solved using the block LDLT factorization.

Note that the perturbation (5.18) makes C' + AC singular, since it perturbs
k negative eigenvalues to the origin. Similarly, the perturbation (5.20) produces
at least one zero eigenvalue. In practice a nonsingular C' + AC' is required, and
the natural approach is to modify the perturbations so that the eigenvalues are
moved to a positive tolerance  instead of 0.

Having computed an optimal perturbation AH we have to refactorize C'+ AC
in order to solve (C' + AC)z = b. It does not seem practical to apply updating
techniques to the original factorization, since the update may not be of low rank.

However, if M = 0, m > n and A € R™*" has full column rank, we can
update the KKT matrix K using a formula in Fletcher [31, ex. 12.12, p. 327], in

which the pseudoinverse of A is required. Given

H+AH A
K+ AK = ,
AT 0
we have
0 0
(K+AK) '=K ' - : (5.27)
0o S

where S = ATAH(AT)T and At = (AT A)=" AT is the pseudoinverse of A. When

solving a linear system (K + AK)x = b using (5.27), the solution is given by
0 0

xr=K'h— b.
0 S
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Note that the block LDLT factorization of K is readily available when determining
the inertia of K. The constraint matrix A”, and hence the pseudoinverse A™,
remains constant within an optimization application (at least for linear equality
constrained optimizations), which means that A" can be computed only once
via a singular value decomposition or a QR factorization, so it may not be too
expensive.

In the case where M = 0, our algorithm provides, as a by product, a direction
of negative curvature, which is defined as a vector p for which (cf. (5.2)) ATp =0
and p” Hp < 0. Such directions are needed in nonlinear programming to achieve
convergence to points that satisfy second order necessary conditions for optimal-
ity. Writing the perturbation (5.18) as AH = VVT, we know that the matrix

(5.13), which we denote by S, is negative definite. Now

X H Al |X v
S = [VT ()T] . where =
Y AT 0| |Y

o

Thus HX + AY = V and ATX = 0, which implies X"THX = ST = S. The
Jth column z; of X satisfies x]Tij = s5;; < 0, since S is negative definite, and
ATz; = 0. Thus, every column of X is a direction of negative curvature.

An alternative approach is to work with the projected Hessian Z7 HZ and to
compute an optimal perturbation AH from (5.24) or (5.25). Again, the Lanczos

algorithm can be used, this time to compute the negative eigenvalues of Z7HZ.

5.9 Numerical Experiments

Numerical experiments have been performed in MATLAB where the unit roundoff
u =~ 1.1 x 1071, We generated 50 random KKT matrices K with n =20, m =5
and elements normally distributed with mean 0 and variance 1. The perturbation
is taken to be (1+0)AH where the tolerance 0 = u||K ||, and the required inertia

is (n,m,0).
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First we focus on demonstrating that perturbations (5.18), (5.20), (5.24) and
(5.25) can achieve the given inertia in practice. The inverse of K was formed
explicitly by MATLAB function inv. Then the eigenvalues of G = K~!(1:n, 1:n)
were computed using MATLAB function eig. The null space Z was computed by
MATLAB function QR. In more than 90% of the test cases, all four perturbations
yielded the specific inertia. In a few cases that our perturbations gave the inertia
(n+ 1,m — 1,0), they were easily fixed by reducing the tolerance 4.

Then we implemented our practical algorithm in which G was not formed
explicitly and the eigenvalues were computed by the Lanczos method. An M-file
for the Lanczos method was provided by Thierry Braconnier. Our conclusions of

the experiments are as follows.

1. When computing the optimal Frobenius norm perturbation (5.18), we need
to compute the k& most negative eigenvalues of G = K~'(1:n, 1:n), using
the Lanczos method. This approach is of limited practical use because the
Lanczos method suffers convergence difficulties when there are clustered
eigenvalues close to the origin. In our experiments, the Lanczos method
often failed to converge, even if only two eigenvalues were needed. A shift
and invert technique was employed to overcome the problem. Essentially,
it involves working with (G — AI)~! where A is a good approximation to
the required eigenvalue . Let x denote the eigenvector corresponding to

A, and let p be an eigenvalue of (G — 6I)~!. We have
Gr=M& (G—6Dr=N-0)re (G-0)""'z=0\N-0""a,

which shows that G and (G — 6I)~! share the same set of eigenvectors, and
their eigenvalues are related by p = (A —4)~'. Unfortunately, G then needs
to be formed explicitly if the shift and invert technique is to be used.

2. Finding the optimal 2-norm perturbation (5.20) gives the same problem as
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above. To determine the kth smallest eigenvalue, we have to compute all
the other £ — 1 most negative eigenvalues. No existing eigenvalue solver
computes a target eigenvalue which is not an extreme eigenvalue for a large

and possibly sparse matrix.

3. When the projected Hessian approach is used, the Lanczos method can
be used to compute all the negative eigenvalues of ZTHZ to determine
(5.24). We run into the same problem when clustered eigenvalues occur.
For perturbation (5.25), we need the most negative eigenvalue of Z"HZ. In
this case, the Lanczos method is shown to be robust and efficient. Provided

the null space Z can be computed efficiently, we recommend this approach.

5.10 Concluding Remarks

We have derived a minimal-norm perturbation, valid for any unitarily invariant
norm, for perturbing only the (1,1) block of a block 2 x 2 matrix so that a specific
inertia is achieved.

In implementing our practical algorithm, we encountered convergence difficul-
ties of the Lanczos method in computing clustered eigenvalues, but how to deal
with such difficulties is beyond the scope of this thesis.

In our experiments, the null space Z was computed by MATLAB function QR
and is the most expensive part of our practical algorithm. How to form the null
space efficiently for large and sparse matrices is again beyond the scope of thesis.
We mention in passing two good references: [8], [73].

An updating formula (5.27) is given for the KKT matrix K which does not
involve a refactorization of K + AK. Unfortunately, the formula cannot be gener-
alized for general block 2 x 2 matrices. To derive some efficient updating schemes,

specially for low rank perturbations, is desirable.
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It is an open problem to develop an efficient algorithm for computing a target
eigenvalue, which is not an extreme eigenvalue, of a large and possibly sparse

matrix.
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Chapter 6
Generalized Hermitian

Eigenvalue Problems

6.1 Introduction

A matrix pencil is a family of matrices A — AB, parameterized by a complex num-
ber A. The generalized eigenvalue problem is to compute the nontrivial solutions

of the equation
Az = \Bu. (6.1)

The natural generalization of the standard Hermitian eigenvalue problem is to
pairs of Hermitian matrices, that is, A and B are Hermitian. A matrix X € C"*"
is said to be Hermitian if X = X* where X* denotes the conjugate transpose
of X. Throughout this chapter, we will assume A and B to be Hermitian. The
generalized Hermitian eigenproblem arises in many engineering application like
structual dynamics for computing damped natural modes [70], [72], and when a
Sturm-Liouville problem is discretized by high order implicit difference schemes
[19], [74].

For the standard Hermitian eigenvalue problem, we have a complete set of real
eigenvalues and orthogonal eigenvectors. However symmetry alone is not enough
to guarantee such properties for the generalized case, as the following example

shows. Let

A= . B=
10 10

Then the pair (A, B) is Hermitian, and the eigenvalues of the pair are 1 (twice)
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with only one eigenvector [0 1]T. We call such pair of matrices a defective pair.
This phenomenon is best explained by theorems of Frobenius [35], dating back
to 1910, which explain the properties of the matrix product B~'A. We describe
Frobenius’s theorems in Section 6.2. In short, the theorems say that a generalized
Hermitian eigenvalue problem is equivalent to a standard eigenvalue problem that
is potentially any standard eigenvalue problem. Of particular interest is the case
where (A, B) is a definite pair, for which all the eigenvalues are real and the
matrices A and B can be simultaneously diagonalized; see Section 6.3. The
proof of the latter property is constructive. It suggests an algorithm to reduce a
generalized eigenvalue problem to a standard Hermitian eigenvalue problem. In
Section 6.4, we look at the simultaneous diagonalization approach and summarize
Crawford’s work which shows how to implement this reduction efficiently when
A and B are banded.

A relevant nearness problem is: “Given an indefinite pair (A, B), what is the
nearest definite pair?” We investigate this nearness problem in Section 6.5. We
introduce the term inner numerical radius and show an elegant solution of this
nearness problem in the 2-norm. A simple algorithm is proposed for computing
the inner numerical radius and optimal perturbations. When (A, B) is a normal
pair, we exploit the characteristics of the eigenvalues and suggest an alternative
method for determining the inner numerical radius. Concluding remarks are given

in Section 6.6.

6.2 Properties of Hermitian Matrix Product

In this section, we survey the properties of products of two Hermitian matrices.
A well known result of Frobenius [35] states that every n x n matrix is a product
of two symmetric matrices. However, not every n X n matrix is a product of two

Hermitian matrices. We note that there is some confusion in the literature over
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the latter distinction, for example [84, p. 281].

Based on [9], [60], [85], we state Frobenius’s results in modern notation and
give a clear summary of the properties of the Hermitian matrix product. First we
show that every n X n real (complex) matrix is a product of two real (complex)
symmetric matrices. We present the real and complex case in two theorems.
This is natural in the sense that one would expect to end up with both A, B real

(complex) when M is real (complex).

Theorem 6.2.1 (Frobenius) Every M € R"*" is a product of two real sym-

metric matrices A and B™'.

Proof: We give the proof for the case M = B~!'A. The proof is similar for
M = AB™!. For any matrix M € R"" there exists a nonsingular X € R"*"

such that
X 'MX = diag(Cy, (a1,01), ... Cr,(ap, bp), Jip s Mpi1)s -5 Je,(Ng)), (6.2)
where Cy(a,b) € RF** is the real Jordan block

C(a,b) I

Ck (a, b)

C(a,b) I -b a

and Jy()\) € RE*F is the Jordan block

A1
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Here ay, b, A are real; see [60, p. 151-153] for details of this real Jordan canonical

form. Now let P, € R¥** be the permutation matrix

By (6.4)

1 0

which is symmetric itself and P = I. Tt is easily shown that 5k(ak,bk) =

PyCy(ay, by) and jk()\) = P, Ji(\) are symmetric. Further let

B = diag(Py,, ..., Py,),

A = diag(Ch, (a1, 1), -+, Cry (@, bp)s Ty iy Mpn)s -+ Ty (Ag))-

Note that A, B are symmetric with B nonsingular. We can rewrite (6.2) as
X-'MX = BA. By taking B~ = XBXT and 4 = X TAX !, we complete the

proof. O

Theorem 6.2.2 (Frobenius) Every M € C"" is a product of two complex

symmetric matrices A and B!,

Proof: The proof is similar to Theorem 6.2.1, but uses only the complex
Jordan form. For any matrix M € C"*", there exists a nonsingular X € C"*"

such that
X'MX = diag(Jk, (M), -+ s e, (Ng)), (6.5)
where Jp(\) € C*** is the Jordan block

A1

Ji(A) (6.6)
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Now let P, € R¥** he the permutation matrix as defined in (6.4). It is easily

shown that J,(\) = PpJ,()) is complex symmetric. Further let

B = diag(Py,, - .., Py,), A = diag(Ji, (M), -5 T, (Ag)-

Note that E, B are symmetric with B nonsingular. We can rewrite (6.5) as
X-'MX = BA. By taking B! = XBXT and A = X TAX !, we obtain the
result. O

Now we show by example that Theorem 6.2.1 cannot be generalized for the
Hermitian case, that is, for complex M we cannot always take A and B Hermitian.

Assume B is Hermitian and nonsingular, and consider
a b| |7 1 a a—+ib
b c¢| |0 14 b b+ic
where a, ¢ are real since B is Hermitian. For A = A*, we have
ia =1a=a=0,

ib=a+ib=b=0,

b+ic=b+ic=c=0,

thus B = 0 and hence we have a contradiction.
In fact, Theorem 6.2.1 holds for complex matrices if and only if M is similar

to a real matrix, so that the nonreal eigenvalues come in conjugate pairs [85].

Theorem 6.2.3 (Frobenius) A matriz M € C*™™ is a product of two Hermi-

tian matrices A and B~ if and only if M is similar to a real matriz.

Proof: If M is similar to a real matrix, there exists a nonsingular matrix Y
such that M = Y SY~!. Using Theorem 6.2.1, we have S = BA where A, B are
symmetric. Taking B~' = YBY* and A = Y~*AY ! gives the result.
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Conversely, let M = X diag(Jy, (M), ..., Jk, (X)) X ' = XJX ! be the Jor-
dan canonical form where &y + - -- + k, = n and Ji(\x) is defined in (6.6). Con-
sider M = B™'A = B™'(AB~")B = B~'M* B, which implies M is similar to M*,
hence J is similar to J*. This means, if ) is an eigenvalue of J then ) is also an
eigenvalue with the same multiplicity and the same Jordan structure. That is,
the eigenvalues are real or in complex conjugate pairs. Thus M can be written

in the real Jordan canonical form (6.2),
M = X diag(C, (a1,b1), - - -, Cr (@, ), Ty or Mgt )+ o T (M) X7 = XGX T,
where Cj, is defined in (6.3) and G is real. We have

M= (B'X™)G"(X*B) = (X*B)"'G"(X*B),

as required. O
In addition, we can show that B can be positive definite if and only if M is

similar to a Hermitian matrix.

Theorem 6.2.4 (Frobenius) A matriz M € C"" is a product of two Hermi-
tian matrices A and B™' with B™' positive definite if and only if M is similar to

a Hermitian matrix.

1
Proof: If B! is positive definite, it has a positive definite square root B~ 2.
Then
11 11 1.1
M=B'A=B 2(B 2AB 2)B2 = B 2AB>
where A is Hermitian since A = A*. Conversely, write

M=YMY'= (Y)Y *MY '=B'4,

where M, A, B7! are Hermitian with B~! positive definite, as required. O

We summarize our results in Table 6.1.
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M (A, B) Similarity of M  Eigenvalues

real real symmetric — real, complex conjugate
complex complex symmetric — real, complex

complex Hermitian real real, complex conjugate
complex Hermitian (B > 0)* Hermitian real

B > 0 means B is positive definite.

Table 6.1: Properties of matrix product M = B~ 'A.

6.3 Definite Pairs

In this section, we introduce the concept of the field of values [61] and that of a

definite Hermitian pair from Stewart [82].

Definition 6.3.1 The field of values of A € C"™" 1is the set of all Rayleigh

quotients:
2* Az "
F(A) = —:0#£2€C" ¢,
2z
where z* denotes the conjugate transpose of z. O

The set F(A) is compact and convex [61, Thm. 1.4.2], and when A is normal
(A*A = AA*) it is the convex hull of the eigenvalues. For a Hermitian matrix
F(A) is a segment of the real axis and for a skew-Hermitian matrix it is a segment

of the imaginary axis. The following properties of F'(A) are easily shown.
1. F(aA+pI)=aF(A)+ 6, «,8€C;
2. F(A+ B)C F(A)+ F(B).

Definition 6.3.2 (Stewart) The Hermitian pair (A, B) is a definite pair if

v(A, B) ;== min |F(A +iB)| = min /(2*A42)? + (2*B2)? > 0.

[[2ll2=1

where 1 is the imaginary unit. O
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The scalar y(A, B) is called the Crawford number of the matrix pencil A — A\B
and its association with definite pairs was first noted by Crawford [22]. Tt is
worth noting that Crawford’s original definition for real symmetric matrices is
not equivalent to the definite Hermitian pair defined in Definition 6.3.2 when A,
B are symmetric. His definition restricted z to be a real vector and is only valid
when n # 2. The following matrix pair shows the necessity of the restriction

n # 2 in Crawford’s definition.

A:ﬁ 0] B:[o 1]
o -1]’ 1 0]

Any r € R? with [|z]|s = 1 has the form 2 = [cosf sin6]7, and we have

V(2% Az)? + (2*Br)? = cos® 20 +sin?20 = 1 for all 6,

while (A, B) = min |F (A +iB)| = 0 with the minimum attained for z = [1 ] .
Stewart [82] extends Crawford’s definition for the complex case and removes the
restriction n # 2.

From Definition 6.3.2 we state the following lemma which give an alternative

characterization of a definite pair.

Lemma 6.3.3 (A, B) is a definite Hermitian pair if and only if 0 ¢ F(A +iB).

O

One direct consequence is the following result in which null(A) denotes the

nullspace of A.

Corollary 6.3.4 If (A, B) is a definite Hermitian pair then null(A) Nnull(B) =

{0}. O

Note that the converse of Corollary 6.3.4 is not true as the following example

shows. Let
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We have null(A) = null(B) = {0}. However v(A, B) =0 for z =[1 1]T.
For definite pairs, we can always assume that B is positive definite, as the
next result from Stewart [82] shows; a definite Hermitian pair can be transformed

by rotation into a pair in which B is positive definite.

Theorem 6.3.5 (Stewart) Let (A, B) be a definite Hermitian pair, and for 0 €
R let

Ay = Acosf — Bsin#,

By = Asinf + Bcos?H.
Then there is a 0 € [0,27) such that By is positive definite and
V(A, B) = Amin(By),
where Amin(By) is the smallest eigenvalue of By.

Proof: Let the minimum of |F(A + iB)| be attained at the point h = re',

that is,
h=re? = mzin 2*(A+iB)z = z5(A +iB)z,

where z € C", ||z||s =1 and r > 0. We know 0 ¢ F(A +iB) from Lemma 6.3.3.
Together with the convexity of the field of values, this implies that F/(A +iB) is
contained in the half plane H whose boundary passes perpendicularly through A.

Let hy and Hy be the corresponding quantities for the pair (Ag, By). Since
Ag +iBy = €A + iB), these quantities are just the original quantities rotated
through the angle . Choose 6 so that Hy lies in the upper half plane and hy lies

along the imaginary axis, that is, choose 6 so that 6 + ¢ = 7. We have
he = ir = re'"T®) = e 2" (A + iB)zy = 25 (Ag + iBy)zo = 25 Agzo + 12 By
Since Ay, By are Hermitian and no point lies below Hy, we have
25 Agzo = 0, 0<r=2z;Bpz = mzin 2*Bpz| = Amin(By),
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which proves that By is positive definite. O

Crawford and Moon [23], [24] present a bisection-like algorithm for computing
6 such that By is positive definite, for a definite pair (A, B). The main computa-
tional cost of their algorithm is a Cholesky factorization in each step to test the
definiteness of By for the current estimate of . Their algorithm can take O(n)
steps and therefore can require O(n*) flops.

When By is positive definite, it is easily shown that A, and By can be si-
multaneously diagonalized [82], [84]. Note that the following theorem can be

generalized to the case when By is positive semidefinite; see [41, Thm. 8.7.1].

Theorem 6.3.6 Given a Hermitian pair (Ag, By) with By positive definite, there
exists a nonsingular matriz X such that X*AgX = Ay and X*ByX = I, where

Ay is real and diagonal.

Proof: Since By is positive definite, it has a positive definite square roots
B;/Q. Then the pair (Ap, By) shares the same set of eigenvalues to the pair
(B;1/2A€B;1/2,I). Let Bgl/ZAaB;l/2 = QApQ* be the spectral decomposition
of B(,_l/QAoBe_l/Q. Then X = B;UQQ is easily seen to be the required matrix.
O

Using Theorems 6.3.5 and 6.3.6, it is easily shown from A +iB = e~"(A, +
iBy) that every definite pair (A, B) is simultaneously diagonalizable. Indeed, the
eigenvalues \ of (A, B) and )y of (Ag, By) are related by A\ = e *),. In other
words, every generalized Hermitian eigenvalue problem for a definite pair can be
reduced to a standard Hermitian eigenvalue problem.

The simultaneous diagonalization approach is well known [41], [71], [84]. In
practice, instead of computing the positive square root B;/Z, we compute By =

LL* the Cholesky decomposition where L is lower triangular. Thus we have
Cy= Xy where C =L 'AjL * (6.7)
We now investigate the simultaneous diagonalization approach.
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6.4 Simultaneous Diagonalization

Throughout this section, B is assumed to be positive definite.

The simultaneous diagonalization approach (6.7) takes full advantage of the
Hermitian structure of A and B, and reduces a generalized eigenvalue problem
to a standard Hermitian eigenvalue problem. However it has two disadvantages.
First, C' is generally full even when A and B are sparse. In the case when A and
B are banded matrices, Crawford [21] shows how to implement the simultaneous
diagonalization efficiently. We describe Crawford’s algorithm in Section 6.4.1.

The second disadvantage of this approach is that when B, and hence L, is ill
conditioned, the matrix C' may have very large entries and the eigenvalues of C

can be severely contaminated with roundoff error, as the following example from

[41] shows. If
1 2 3 001 0 0
A=12 4 5], L=11 .00 0
35 6 2 1 .001

and B = LL", then the two smallest eigenvalues of A — \B are
A1 = —0.619402940600584, A2 = 1.627440079051887,

with the condition numbers ka(\1), Kka(A2) equal to 30.64 and 89.00 respectively.

Both eigenvalues \;, Ay are well conditioned. Here we use the condition number

Ko(A) := limsup {j—j\\ (A4 AA)(z + Az) = (A + 6N (B + AB)(z + Ax),

[AA][; < €el[All2, [[ABl2 < 6||B||2},

which, for a definite pair is given by

_ N l3CAN + [AIBI2)
Allz* Bzl ’

K9 ()\)
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see Higham and Higham [50].
However, using eig(L\(A/L’)) in MATLAB where the unit roundoff u ~

1.1 x 1076, we have

N = —0.619330319419197, Ny = 1.627630594726815,

where the incorrect digits are in italics and underlined. The reason for obtaining

only four significant digits is that xo(B) = ||B~!||2|| B||l2 & 10'®.

6.4.1 When A and B are Banded

When A, B € R™*" are banded with bandwidth m for some m < n, Crawford [21]
shows how to form this reduced eigenvalue problem efficiently. Recall a symmetric
matrix A is said to have bandwidth m if a;; = 0 for |i — j| > m.

With the assumption that B is positive definite, the Cholesky decomposition

B = LL" exists and we have C = L' AL™T. Tf ¢ = n/m is an integer, then we

can write
0, B _ D, _
BT H, B, M D,
A= BY . . L= Mo :
B,
B({—l Hq MqT—l Dq

where A is block tridiagonal and L is block bidiagonal with all the blocks m x m.
Here B;, D;, M; are lower triangular and H; is symmetric. Furthermore L can be
factored as follows:

L: LlLQ...Lq,
where Ly, = diag(/(z—1)m, Zk,l(q_k_l)m) and

~ D, ~
L, = fork=1,...,¢q—1, L,= D,.
MF I,
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Note that E,;l, and hence L;l, is easily computed. Let A; = A and
Agir = L,;lAkL,;T fork=1,...,q.

We have C = A,4;. Crawford’s idea is to restore the bandwidth of A, at each

stage [21]. Let A =Aandfork=1,...,q,
Apr = QuL AL QF (6.8)
where

Qx = diag(Qx, Iig—rym), (6.9)

are orthogonal matrices chosen so that Ekﬂ has bandwidth m. Assuming that

ék can be found, it is easily shown that for p > k,
QrL, ' = L Q.
Thus
C=Ap1=Q,L; A L;"Q7
- Qqu_lQq—qu_—llAq—qu_—ﬂQqT—1Lq_TQqT
= QuQq1 L, L Ag L LT QF
= Q,Qq 1---Q1CQT ... qTle:‘IF.

This shows that C and C have the same eigenvalues. It remains to show that Q)

exists. This is done by induction. For k£ = 1, consider

Ay =L7PALTT = | BOT g

where the superscript denotes the stage in the reduction and the hats indicate

blocks changed by the congruence transformation. Note that EF) may not be
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lower triangular. We can restore the band structure by performing a QR factor-
ization on §{1)T, that is, choose @ = diag(@l,l(q,l)m) so that @1§§1) = §§2)
where §§2) is lower triangular. Hence Ay = QL; "AL; TQT has bandwidth m.

Assuming that (6.8) is true for k, consider

_Hl(k) B%k)
Bik)T HQ(k) Bék)
Bék)T
Ap = L AL = . BWB® ,
BT A B

ﬁk(k)T B\I(Ck)T H}ngrl)

Now E,(Ck) may not be lower triangular and ﬁk(k) is nonzero. These matrices are
the fill-in outside the band structure. We can restore the band structure using

a block version of an algorithm of Rutishauser [75] that reduces a pentadiagonal

matrix to a tridiagonal one. Let R,(Ck) = diag(Ix—2ym, X,Ek), Itq—kym), where X,Em is

chosen so that

20
v |[B] |0

- I

k ~
B}E;k) BI(Ck-l—l)

and B,(Ckﬂ) is lower triangular. That is, perform a QR factorization on the matrix

where P, is defined as in (6.4).

126



6. Generalized Hermitian Eigenvalue Problems

Now we have
[ g®  p® ]
BT gk p®
B 0
ROLIALTRIT = Ay, BY
ROTBUT mE B
B£k+1)T H}gk-i-l)

The nonzero block ﬁk(k) is shifted up one position along the diagonal. After &k

such transformations, we take

and
Apr = QoL A LTQF

again has bandwidth m. Moreover, since each R,(Cp) satisfies (6.9) for p < k, so

does Q.
If initially n/m is not an integer, then A is augmented by zero rows and

columns and B by rows and columns of the identity matrix so that their dimension

is a multiple of m. Since we assume m < n, the extra computational cost is not

significant.
However we note that the overall computational cost can be expensive. Apart

from this banded case, as Golub and Van Loan [41] comment, “the simultaneous

diagonalization approach is impractical for the large, sparse symmetric definite

problem.”
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6.5 Nearest Definite Pair

We are interested in finding the nearest definite Hermitian pair to a given Hermi-
tian pair (A, B). Throughout this section, we assume (A, B) is not definite, that

is, F/(A + iB) contains the origin (see Lemma 6.3.3). We want to find
d(A, B,d) = min{||[AA AB]|| : v(A+ AA, B + AB) = ¢},

where ¢§ is a suitable positive constant and (-, -) is defined in Definition 6.3.2.

Note that 7(-,-) is invariant under rotation
(4, B) = e (A, B) =: (Ay, By),

as the following lemma shows. The minus sign means that F(A + iB) is rotated

with an angle § about the origin in the clockwise direction.
Lemma 6.5.1 Let (A, B) be a Hermitian pair and for 6 € R let
Ay = Acosf + Bsin, By = —Asinf + Bcosf. (6.10)
Then (A, B) = (A, By).
Proof: The proof is straightforward. By Definition 6.3.2, we have
v(Ag, By) = min|F(Ag+iBy)| = minle " F(A+iB)| = min|F(A+iB)| = v(A, B),

as required. 0O
It is natural to choose a norm that preserves this invariance. As the following
result shows, all unitarily invariant norms have this property. Recall that for a

unitarily invariant norm is one for which [|QAU|| = || A for all orthogonal @, U.

Lemma 6.5.2 Let (A, B) be a Hermitian pair, and let Ay and By be defined as

in (6.10). Then, for any unitarily invariant norm,
I[A Bl|| = [[[Ag Byl
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Proof: We can write

cosf@ —sinf
[Ag By] = [A B] ® 1] =:[AB|Q,
sinf  cosf

where ® denotes the Kronecker product and () is orthogonal. Then, for any

unitarily invariant norm,
1[40 Bolll = [[[A BlQl| = [[[A B]||. D
In particular, for the 2-norm and the Frobenius norm we have
I[A Bz = |4* + B?[l2,  |[A Blllz = [|AlF + |1 B[7

respectively. We derive optimal 2-norm perturbations and show how to determine
the perturbations efficiently in Section 6.5.1. For the case where A+¢B is normal,
we exploit the characteristics of the eigenvalues of the matrix pair and propose

an alternative method to compute the perturbation in Section 6.5.2.

6.5.1 Optimal 2-norm Perturbations

We want to find
dy(A, B,d) = min{||[AA AB]|2:v(A+ AA, B+ AB) = §}. (6.11)

First we note that, in terms of the field of values, problem (6.11) is equivalent to

finding AA and AB such that
Ds(0) N F(A+ AA+i(B + AB)) at a single point, (6.12)

where D, (z) denotes a disc centred at = with radius y. In other words, we
want Ds(0) and F(A+ AA+i(B + AB)) to intersect at their boundaries. Since
both sets are convex and compact with Ds(0) strictly convex, the intersection

point is uniquely determined. Intuitively, one would like to associate the minimal
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perturbation with the nearest distance from the origin to the boundary of F/(A+

iB), which we call the inner numerical radius:
C(A) = min{|w| : w is on the boundary of F(A)}.
This quantity is not to be confused with
Tmin(A) = min{|w| : w € F(A)},

which is indeed the Crawford number v(H, S) where H = (A + A*)/2 and S =
(A — A*)/2i.

When the origin is not contained in the field of values, ((A) = rmin(A4). When
the field of values does contain the origin, rmi,(A) = 0 while ((A) is the radius of

the largest circle centred at the origin and contained within F'(A).

Write C = A + iB, we have, for any z € C",
w=2"Cz=2"Az+12"Bz,
where z*Az and 2*Bz are real. It follows that for w € F(A +iB)
Amin(A) < Re(w) < Amax(4),

where Apin and Apay denote the minimum and maximum eigenvalues, respectively,
of a Hermitian matrix. Thus the field of values lies within the vertical strip
defined by the lines parallel to the imaginary axis that intersect the real axis at
Amin(A) and Apax(A). The bounds are attained when w is the Rayleigh quotient
2*Cz/(2*z) with z an eigenvector of A corresponding to Ayin(A) and Apax(A);
note that this point lies on the boundary of F(A). Now consider Cy = e~ =
Ay 4+ iBy. The field of values of Cy is just that of C rotated clockwise through 6
radians about the origin, so ((Cy) = ((C). Applying the above argument to the

rotated matrix Cy we obtain
)\min(AG) S Re(e_ww) S )\max(AH)a w € F(C), (613)
where, again, both bounds are attained for a point on the boundary of F(C).
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Theorem 6.5.3 The inner numerical radius for a Hermitian pair (A, B) satisfies

C(C) =] min Amax(4o) |, (6.14)

0<<2n

where C = A+ iB and Cy = e C = Ay + iBy. Let the minimum be attained at
0 =0,. Then0¢€ F(C) if and only if Amax(Ag.) > 0, and the point ((C)e' is on
the boundary of F(C') where

0., if 0 € F(C),
0, +m, if0¢ F(C).

Proof: Consider, first, the case where 0 € F(C). Then 0 € F(Cj) for all 0,
SO Amax(Ag) > 0 for all §, by (6.13). Since F(C') is convex, every point w on the
boundary of F(C) having minimal modulus gives equality in the right-hand side

inequality of (6.13), for some 6, and it follows that

C(C) > | min Amax(Ag) |. (6.15)

0<0<27

If ¢(C) is attained at the point re® on the boundary of F(C), then equality is
attained in (6.15) for 6 = ¢.

If F(C) does not contain the origin then A\y.x(Ag) takes both positive and
negative values for 6 € [0,2x]. It is easily seen that if ((C') is attained at the
point re'® on the boundary of F(C) then (6.14) holds with the minimum being
attained when 0 = ¢ — 7 and that A\, (Ay) is negative. O

The problem (6.11) has an elegant solution, in terms of the inner numerical

radius, with a positive parameter §.

Theorem 6.5.4 Let A, B € C"*" be Hermitian, and let C = A+ iB and A, =
Acos ¢+ Bsin¢. Let ming<g<or Amax(Ay) be attained at the angle 6 and let Ay

have the spectral decomposition

Ag = Qdiag(p)Q",  pin <1 <o < i
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If 0 € F(C) (or, equivalently, p1n > 0) then
dy(A,B,6) =0+ =6+ ¢(C).
If0 ¢ F(C) (or, equivalently, 11 < 0) then
d2(A, B, §) = max(0 + 1, 0) = max(d — ¢(C),0).

In both cases, two sets of optimal perturbations in (6.11) are

AA = cosf Q diag(min(—6 — p;,0))Q",
(6.16)
AB = sin () diag(min(—4§ — p;,0))Q*

and
AA = —dy(A,B,0)cosfI, AB = —dy(A,B,J)sinf 1. (6.17)

Proof: First, we consider the case 0 € F(C). Write AC = AA +iAB.
Definition 6.3.2 shows that our task is to find perturbations AA and AB such
that ((C+ AC) = rpin(C+ AC) = § and ||[AA AB]||; is minimized. If AC is an
optimal perturbation then every point in the convex set F'(C'+ AC') has modulus
at least 0, with equality for at least one point, so there is a line p whose minimal
distance to the origin is ¢ such that F'(C' + AC) lies entirely in the closed half
plane H defined by p that excludes the origin. Let the line perpendicular to p
passing through the origin intersect the boundary of F(C') in the complement of
H at w = z*Cz (2*z = 1); if there are two such points, take the one of furthest
from p. Then when C' is perturbed to C + AC' this point must move distance at

least |w|+ ¢. Hence

|2 ACz| = |2"(C + AC)z — 2*Cz| > |w| + § > ((C) + 0.

132



6. Generalized Hermitian Eigenvalue Problems

Now using a trick from [64],

2*ACz| = |2 AAz + iz* ABZ|
1/2

= ((2*AAz)* + (*ABz)?)

cos
= max[2*AAz 2" AB?]
’ sin 0

cos f
= max Z*[AA AB] 2

sin 6

< [[A4 AB]|.
Hence
I[AA ABJ|l; > ¢(C) + 6. (6.18)

With @ as specified in the statement of the theorem define Ag+ By = e (A +iB),
so that Ay = Acosf+ Bsinf and ((Ap+iBy) = ((A+iB). Note that F(Ag+iBy)
is F(A + iB) rotated 6 radians clockwise about the origin. Applying Theorem
6.5.3 to C' and recalling that 0 € F(C), we find that ((Ag + iBy) is attained at

the point in the complex plane
(11,0) = (¢1 Aoq1, a1 Boar),
where 1 > 0 and ¢, is the first column of ). Let
AAy = Q diag(min(—0 — p;,0))Q", ABy = 0.
Then all the eigenvalues of Ay + AAy are less than or equal to —¢ and

(¢ (Ag + AAg)q1, ¢ (By + ABg)qr) = (—0,0),
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so it follows that

")/(Ag + AAy, By + ABQ) =.

Now define AA and AB by
A4+ AA+i(B+ AB) = € (Ag + AAy +i(By + ABy)).
Then, by Lemma 6.5.1, we have
v(A+ AA, B+ AB) = y(Ayg + AAy, By + ABy) = 0.
Using Lemma 6.5.2, it follows that
I[AA ABJ|l2 = [[[AAg ABglllz =0+ m =0+ ¢(C).

Thus AA and AB are feasible perturbations that attain the lower bound in (6.18),

and so are optimal. The perturbations (6.17) correspond to
A4y = Qdiag(—5 — )Q" = (0 + ((C)I,  ABy =0,

and are easily seen to provide another solution.

Now suppose that 0 ¢ F(C). Note that only in this case can (A, B) already
be a definite pair and hence dy(A, B,d) be zero. If {((C) > § then, trivially,
dy(A, B,§) = 0 and the distance and perturbations in the statement of the the-
orem are, correctly, all zero. Therefore we can assume that ((C) < §. Define
Ag+iBy as in the first part. Note that, by Theorem 6.5.3, F(Ay+iBy) lies in the
open left half plane and w = —((A4y + iBy) is on the boundary of F'(Ay + iBy).
The perturbation AC must move w to the boundary or exterior of the circle cen-
tre at the origin with radius d, therefore w must move a distance at least ¢ + j;.
As in the first part, this leads to the bound ||[[AA AB]||s > § + p1, and the rest
of the proof is very similar to that of the first part. O

To illustrate Theorem 6.5.4, we compute the fields of values of two 5 x 5 ran-

dom indefinite Hermitian pairs (A4, B) using fv.m from the MATLAB Test Matrix
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Figure 6.1: Change of boundaries of the field of values under perturbation (6.16), (6.17).
Key: Original ---, (6.16) - - -, (6.17) —.

Toolbox [54] in which the eigensystems are computed by the QR algorithm. We
set § = ul|A+1iB||s where u ~ 1.1 x 107'® is the unit roundoff, and compute 200
points on the boundary of F/(A + iB). Figure 6.1 shows how the boundaries of
the fields of values are perturbed, and the origin is excluded, under perturbations
(6.16) and (6.17).

Theorem 6.5.3 parameterizes the problem of determining ((C') as a minimiza-
tion problem of a function of 6. Let fimax(f) denote the maximum eigenvalue of
Acosf+ Bsinf, and let the minimum in (6.14) be attained at the angle § and 0
denote its computed counterpart. Note that pmax(f) is a continuous function of
0. To determine é\, a set of imax(6;) is computed, where §; = 2kn/m for k = 1:m.
Then 6 = {6; yielding | ming, fimax(60;)|}, and 0 — 0 as m — oo, using the conti-
nuity of pmax(6). That is, given a large enough set of pimax(6;), a sufficiently good
approximation to the optimal 2-norm perturbation is guaranteed.

For obtaining each fimax(6;), we can use a Lanczos-based algorithm described
in Braconnier and Higham [10], in which only matrix-vector products are com-
puted. If A, B are large and sparse, so is A cosf + Bsinf. Thus this algorithm is

well suited for the purpose in this case. However, computing the whole boundary
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Figure 6.2: A typical graph Apax(Ag) for an indefinite pair (4, B).

of F(C) is expensive and most of the computed values are not needed subse-
quently. It is desirable to design algorithm to determine 0 without computing
the boundary of F(C).

Of course, any standard minimization algorithm can be applied but may con-
verge to a local minimum. Figure 6.2 shows a typical graph of the function
Amax(A cos + Bsinf) for an indefinite pair (A, B). Note that Apax(Acosf +
Bsin#) is positive for all # and has more than one local minimum. One useful
approach is to compute a set of jiynax(6;) and then refine the best approximation
to the inner numerical radius using an minimization algorithm. Further develop-

ment of such algorithm is desirable but is beyond the scope of this thesis.

6.5.2 Normal Pairs

For the special case where A 4+ iB is normal, we apply a different approach
that exploits the characteristics of the matrix pair. Much is known about the
properties of normal matrices [45]. We shall call a matrix pair (A, B) for which

A +1iB is normal a normal pair.
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Lemma 6.5.5 Let (A, B) be a normal pair. Then
A+1iB is normal <= A, B commute <= AB is Hermitian.
Proof: We have

0=(A+iB)*(A+iB)— (A+iB)(A+iB)"
=(A—iB)(A+iB)— (A+iB)(A—iB)
= (A® +iAB —iBA + B?) — (A? —iAB +iBA + B?)
= 2i(AB — BA),
which shows the first “<—=". Moreover, we have AB — BA = AB — B*A* =
AB — (AB)*, which completes the proof. O

In addition, since normal matrices are always diagonalizable [45], we have the

following lemma.

Lemma 6.5.6 If (A, B) is a normal pair then there exists a unitary @ such that
both Q*AQ and Q*BQ are diagonal.

Proof: Let C' = A+iB have the spectral decomposition QAQ* where QQ* =
I and A is diagonal. We have
A=(C+C")])2 = Q"AQ = (A + A")/2,
B=(C—-C"/2i= Q*BQ = (A — A")/2i,

as required. 0O

One immediate consequence is as follows.

Corollary 6.5.7 Let (A, B) be a normal pair. Then z is an eigenvector of A if

and only if z is an eigenvector of B. O

Lemma 6.5.6 provides the link between the eigenvalues of a normal pair (A, B)

and those of A + iB, as the following result shows.
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Lemma 6.5.8 Let (A, B) be a normal pair with eigenvalues \; for j = l:n.

Suppose A + 1B is nonsingular and has the spectral decomposition
Q diag(rie®t, ... r,e?)Q",
where r; > 0. Then \j = 1/tan6; for j = L:n.

Proof: As in the proof of Lemma 6.5.6, we have Q*AQ = A4 and Q*BQ =

Ap where Ay = diag(&,...,&,) and Ag = diag(m,...,n,). Thus
diag(rie™, ... re?") = Q*(A+iB)Q = Ay +iAp.

Then A — AB = Q(A4 — AMp)Q* is singular, which implies

fj . ’I“]‘ COSHJ‘ . 1

\ =

n;j rjsinf;  tanf;’
for some j, as required. O

When (A, B) is a normal pair, the field of values of A+ iB is the convex hull
of the eigenvalues. Let

61'71'/4

V2
From Figure 6.3, it is easily seen that dy(A, B,6) = 6 +h = § +1/4/2. Note that

A:B:

diag(1, —1,14, —i). (6.19)

the field of values is an union of a set of triangles and A is easily computed using
a formula of Kahan [63], which is a numerically stable version of Heron’s formula
for computing the area of a triangle. Kahan’s formula also serves as an example
where computation with a guard digit is crucial to obtain a stable algorithm [39],
[63].

Let a, b, ¢ be the lengths of the sides of the triangle and arrange a, b, ¢ so
that @ > b > ¢ (which is the case in Figure 6.3). Then the area A of the triangle

is given by

A= @t 0+ 0) (e @) (et @—)(a+(b-o).
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Figure 6.3: The field of values of normal pair (6.19)

Since A also equals to %ah, we have

h:QL\/(a+(b+c))(c—(a—b))(c+(a—b))(a+(b—c)).

a
Note that the parentheses are essential [55]! Our algorithm for determining
dy(A, B, §) is simple. First compute the complete set of eigenvalues Ay, of A+iB €
C*", and arrange A\, so that 0 <6, < 6, < 27 for p < ¢, where 6, denotes the
angle between the positive real axis and the eigenvalue )\; in the anti-clockwise
direction. Then there exists a subsequence {\;,} comprising the extreme points
of F(A+iB). Calculate hy, for each triangle with vertices (0, A, A,,,) with
Megr1 = M- Then dy(A, B,6) = 6 + miny, hy, .

Note that if 6, — 6; < 7 and min; |\;| > 0 then (A, B) is a definite pair. If
0, — 6, < 7 and min; |\;| =0, or 6,, — #; = 7, then the origin is on the boundary

of the field of values F(A +iB) and dy(A, B,d) =§

6.6 Concluding Remarks

We have introduced the concept of the inner numerical radius. This important
quantity is related to the distance from an indefinite matrix pair to the nearest

definite pair, gives an alternative approach to determine whether a matrix is a
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definite pair, and can be used to determine the angle for rotating the matrix
pair so that one of them is positive definite. It is desirable to derive efficient
algorithms for finding this quantity.

For a normal pair, we presented an alternative approach for determining op-
timal 2-norm perturbations using a formula of Kahan. This approach is numer-
ically stable since the underlying formula is. An algorithm for determining the
subsequence of extreme points on the boundary of the field of values is under
development.

One open question is to generalize Theorem 6.5.4 for all unitarily invariant

norms.
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